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Introduction
°

Introduction

Problem:

» Finding 2* such that F(z*) =0

> F:R"™ — R™ (highly) nonlinear

» Important problem in continuous optimization and optimal control
Newton’s method:

> |terative method

> Solve linearized problem

» Many variants
Globalization strategies:

» Newton's method only locally convergent

» Hope to globalize convergence
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Lipschitz Condition
» Given g: [a,b] — R is called Lipschitz continuous with constant A >
0 (denoted g € Lipy[a,b]) if IX > 0 such that
9(x) = g(y)| < Alz =yl for all x,y € [a,b]
Contraction map
» g: [a,b] = R is called contraction map if g € Lipy[a,b] with A\ < 1
Convex set
» A set Cis convex if, for any x,y e Cand # e R with 0 <0 <1,
0z + (1 —0)ye C
Convex function

» A function f: R — R is convex if its domain (denoted D(f)) is a
convex set and if, for all x,y e D(f) and 6 € R with 0 < 6 <1,

> f(Ox+ (1—-0)y) <6f(x)+(1-0)f(y)
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Summary: Newton Method

v

Mitodru N

Fast (i.e. quadratic) local rate of convergence
Scale-invariant w.r.t linear transformations of the variables

Search direction p* is not well defined if V2f(x*) is singular, p* is
not a descent if V2f(x¥) is not positive definite

Minimum points z* can be attracted to sadle points or local maxima

of f

Very small neighbourhood of local convergence, Newton's method is
not globally convergent

Line search, trust region
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1. Convergence properties of Newton methods

What is convergence?

» Convergence means approaching a limit as the argument of the
function increases or decreases or as the number of terms in the
series increases.

» Types of convergence: local and global

» When does it converge locally? When the initial approximation is
already close enough to the solution, then the succesive
aproximations of the iterative method guranteed to converge to a
solution locally.

> |terative methods for nonlinear equations and their systems, such as
Newton's method are usually only locally convergent.
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Rate of convergence

{aF} Cc R* 2% eR™, {2*} — 2* as k — o0
+1

k *
{2*} — 2% with rate r if ”\irw’“ i

—x* H’!‘

= ¢ < oo, for sufficiently large k

r=2: quadratic convergence

k
[
[

>
>
» r=1: linear convergence (c < 1)
>
>

superlinear convergence: —0as k =

gi, Sumet Khumphaii Faculty of Mathematics and Computer Science

Special Topics ation and Optimal Control



Local Conv.
0O0@0000000000

Local Convergence Theorem
» Single dimension: If
> % bounded away from zero
> 21 bounded
Ox2
» Then Newton's method converges given a sufficiently close initial
guess (and convergence is quadratic)
Multidimensional
> If | Jz" (2)| < B (inverse is bounded)
» || Jr(z) — Jr(y)|| <l|Jx — y| (Derivative is Lipschitz continuous)

i, Sumet Khumphairan Faculty of Mathematics and Computer Science

Continuous O zation and Optimal Control



Local Conv.
000@000000000

Example 1

f(x)=x"-1=0, find x (x =1)

%(Xk) =2 X

2ttty (41

20 (X2t ) = () ()]
k+l _ * :L PR

or (x x) 2x"(x X)

» We see that the convergence is quadratic
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Example 2

df | K

—(x")=2x

dx( )

= 2Xk(xk+1_ O) :(Xk _ 0)2

X -0 :;(xk - O) for x* #x" =0

5 1 *
or (X = X)) :E(Xk - X))

-1
> Note: % not bounded away from zero

» We see the convergence is linear
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Newton-Raphson Method - convergence

Example 1,2

W Residual, |

0 z 4 6 0 2z 19 1 1

8
Iteration k

December 6, 2019 <number> courtesy Alessandra Nardi UCB
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Convergence algorithm

Newton-Raphson Method - convergence

x"= Initial Guess, k =0
Repeat {

O\ X
|

( ‘\
k =k +1

} Until ?

Hx“l - ka < threshold ? Hf (X ]H < threshold ?
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Newton-Raphson Method - convergence

Convergence Check
Need a "delta-x" check to avoid false convergence

k+1 k k+1
Hx*-x H>‘C* + e |IX7

x
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Newton-Raphson Method - convergence

Convergence Check

Also need an "f ( x)" check to avoid false convergence
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Newton-Raphson Method - convergence

We require that =° be “close” to the solution x*
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Newton-Raphson Method - convergence

Local Convergence

Convergence Depends on a Good Initial Guess

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University

Special Topics in Continuous Opti on and Optimal Control



Newton-Raphson Method - convergence

Local Convergence

Convergence Depends on a Good Initial Guess

Example:

oscillation

J’ converges to o

'

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University

Special Topi Continuous Optimization and Optimal Control



Local Conv.
000000000000 e

Advantages of Newton Method:

» Quadratic converges

» Requires only one guess

» This is very fast if we are close to a solution
» Doubles the correct digits in each iteration!
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Drawbacks of Newton methods:

» Divergence at inflection points: If the initial guess or an iteration
value of the root that is close to the inflection point of the function.

Table 1 Divergence near inflection point.

Iteration X, 5
Number .
0 5.0000 10
1 3.6560 3 0
2 [2.7465 £
3 2.1084 g,
4 1.6000 0
5 0.92589 *
6 |-30.119 B B R R R
7 —19.746 Divergence at inflection point for
18 [0.2000 flx) =(x- 1" +0.512 =0

Figure: Divergence at inflection points
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Drawbacks: Division by ze

> f(z)=2%—-0.0322 +24x1075=0

Figure: Pitfall of division by zero or near a zero number

» For xg = Oorxg = 0.02 the denominator will be zero

Faculty of Mathematics and Computer Science
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Drawbacks: Oscillations

» Oscillations near local maxima and minimum

» Results may oscillate abut the local maximum or minimum without
converging on a root but converging on the local maximum or
minimum.

» Leads to division by a number close to zero and may diverge.
» f(z) = 2% +2 =0 has no real roots
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Table 2 Oscillations near local
maxima and mimima

M)
Tteration
Number X f ( X ) ‘E a 70
0 —1.0000 |3.00
1 0.5 2.25 300.00 0
2 -1.75 5.063 128.571 b .
3 —0.30357 |2.092 476.47 )
4 3.1423 11.874 |109.66 X
5 1.2529 |3.570 150.80 ”
6 -0.17166 |2.029 829.88
7 57395 |34.942 |102.99
8 26955 |9.266 112.93
9 097678 |2.954 175.96

<number=

Figure: Oscillations around local minima for f(z) = x* 4 2
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Drawbacks: Root jumping

> In some cases, where the function f(x) is oscillating and has a
number of roots, one may choose an initial guess close to a root.

» However, the guesses may jump and converge to some other root.

f(x) =sin x =0
Choose I
X, =2.471 =7.539822

It will convergeto X =0 : /

instead of

X=21=6.2831853

<number>

Figure: Root jumping from intended location of root for f(x)=sin x
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Theorem

» Theorem. Let ® : R™ — R"™ be an iterative function with fixed point
€. U(&) is a neighbourhood of &, a number p > 1 and a constant C
> 0 (with C < 1if p =1) so that for all x ¢ U(¢)

[@(x) — &Il < Cllz = €] (1)

» Then there is a neighbourhood (subset) V(&) C U(&) of £ so that for
all starting points x( the iteration method defined by ® geneerates
the iteration steps x; € V(£) V i > 0 that converges to £ at least
with order p
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> E=R, ® is differentiable in a neighbourhood U(£) If 0 < ®'(¢) < 1,
then the convergence will be linear (first order), z; will converge
monotonically to &

7

T T T T
i Tip1  Tiyz €
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General Convergence Theorem

» Let the function ®: E — E, E= R", have a fixed point & @ (§) = ¢

» Further let S,.(&):={ z ||| z- £]|| < r} be a neighbourhood of £ such
that @ is a contractive mapping in S, (£) that is

[®(z) — @(y)|| < Kz -yl (2)
0 < K< 1forall x,y € S:(§). Then for any xg € S,-(§), the
generated sequence x; 11 = P(x;), i =0,1,.., has the following
properties

'@ Ti€ S’r(é‘) v i=0,1,.., .
8 |lzip1 — €| < Ko — €| < K'Y |xo — €] ie., {x;} converges at
least linearly to &
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Banach Fixed Point Theorem

» Let ®: F — E, E = R" be an iterative fucnction, zgeF be a
starting point, and z;41 = ®(x;), i=0,1, ... Further,let a
neighbourhood S, (o) = {z|||x — xo|| < r} of z¢ and a constant K
where 0 < K < 1, exist such that

8 |2(z) -2 < K|z —yll for all xy € Sy(z0) := {zl[|z —x0o| < 1}
€ lz1 —zol = [[®(20) — 2ol < (1- K)r<r
Then it follows that

mz;eS(x)Vi=01, ..,

m @ has exactly one fixed point &, ®(§) =&, in Sy-(z0) and lgrglo x; =&,

i1 — €]l < Kllwi — €], as well as [|lz1 — €]| < 55 [lo1 — o
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Proof of quadratic convergence

Theorem. Assume that f is twice contimuously differentiable on an open in-

terval (a.b) and that there exists z° € (a,0) with f'(z*) # 0. Define Newton's

method by the sequence

LED)
Sy

Assume also that . converges to x* as k — cc. Then, for k

Thepr = Tk

k=12,

uffi

ntly large.
1£7 (")

1= € Mz -2 £ M >
[2rer — 27| < Mlae -2 i ]

Thus, ; converges to #* quadraticaily (ALG. p. 52)
Proof. Let e, = 2, — 2°, 50 that 2, —ex = 2°. By Taylor’s Theorem (ALG,
Chap. 1, p. 5), setting = z;, and h = —cg, we have
(ex)?

flae —ex) = flan) — enf'lax) + I"8k)

and f(z*) = 0, we have

for some &x between T and x*. Since 1x — ex = =*

(&),

<2 .
s ivative of £ is continuous with f/(x*) # 0, we have f/(z) # 0 as
long 5 7, is close enough to z*. So we ean divide by ['(z}) to give

0= flze) — (ze —2") ') +

e t

0= S8 _ gy ooy BESG),
Fi(xx) 27
which, by the definition of Newton’s method, gives
)
2ff(ae)
So | |
£ -2
< Lo e
= 2ftan) ™

By continuity, f'(z)) converges to f'(z*) and, since & is between z, and z°, &
converges to z* and hence f”(¢;) converges to f"(x"), so, for large enough k.

ki1 — 2] < Mz — z*? if M

In fact, it can be shown without assuming that r, converges to z*, that there

& > 0 such that, if |z — a*| < 8. then ) converges to #*, and hence from
the above argument that the convergence rate is quadratic, but this requires a
more complicated argument by induction.
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Minimization Problems

We consider the following minimization problem for a real function
h:R™ — R of n variables
min h(z).

x
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Definition of Global Convergence

» The iterative method is called locally convergent with V(Z) , a

neigborhood of T, if it generates, for all starting points 2o € V(Z), a
sequence {z}} that converges to Z.

[Note that Z is a minimum point for the function h.]
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Definition of Global Convergence

» The iterative method is called locally convergent with V(Z) , a

neigborhood of T, if it generates, for all starting points 2o € V(Z), a
sequence {z}} that converges to Z.

> |t is called globally convergent , if in addition V(Z) = R".

[Note that Z is a minimum point for the function h.]
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Important Lemma

@ Let h: R"® — R be a function which has a continuous derivative

Dh(z) for all z € V().

[ Note that D(% x) = { R™[[|s]| =1, Dh(z)s > ~|[Dh(z)| } and
Dh(z) = Vh(x)T = (%2, , 55 ]
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Important Lemma

@ Let h:R™ — R be a function which has a continuous derivative
Dh(z) for all z € V().

@ Suppose further that Dh(Z) #0, and let 1 > v > 0.

[ Note that D(v,z) := {s € R"|||s|| = 1, Dh(x)s > ~||Dh(z)|} and

Dh(z) = Vh()T = (%2, , 55 ]

Faculty of Mathematics and Computer Science, Heidelberg University
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Important Lemma

@ Let h: R"™ — R be a function which has a continuous derivative
Dh(z) for all x € V(7).

@ Suppose further that Dh(Z) #0, and let 1 > v > 0.
Then there is a neighborhood U(Z) C V(%) of T and a number A > 0

such that

h(w — s) < h(z) = E|| Dh(a)|
forall z € U(Z),s € D(v,z) and 0 < pu < A\
[ Note that D(v,z) := {s € R"|||s|| = 1, Dh(x)s > || Dh(z)|} and
Dh(z) = Vh(x)T = (%2, , 55 ]

Faculty of Mathematics and Computer Science, Heidelberg University
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Globalization Schemes

» Modified Newton Method with Exact Line Search
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Globalization Schemes

» Modified Newton Method with Exact Line Search
» Modified Newton Method with Inexact Line Search
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Globalization Schemes

» Modified Newton Method with Exact Line Search
» Modified Newton Method with Inexact Line Search
» Quasi-Newton Method
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Globalization Schemes

» Modified Newton Method with Exact Line Search
» Modified Newton Method with Inexact Line Search

» Quasi-Newton Method

— BFGS
— Oren-Luenberger

Mitodru N Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Modified Newton Method with Exact Line Search

@ Choose a starting point xg € R™.
Choose numbers v < 1,04,k = 0,1, .., with
infy v, > 0,infy o > 0.

Mitodru N Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Modified Newton Method with Exact Line Search

@ Choose a starting point xg € R™.
Choose numbers v < 1,04,k = 0,1, .., with
infy v, > 0,infy o > 0.

@ Forall k=0,1,..., update

Tht1 i= Tk — ApSk
where s, € D(yg,zr), and Ag € [0,0%|Dh(zy)||]] is such that

h(k41) = minth(zy — psi) - 0 < i < ol Dha)lI}-

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University

Special Topics in Continuous Optimization and Optimal Control



Globalization Schemes
0080000000000

Global Convergence Results for Modified Newton Method
with Exact Line Search

€ K :={z|h(x) < h(zg)} is compact , and

€ h is continuously differentiable in some open set containing K.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Global Convergence Results for Modified Newton Method
with Exact Line Search

€ K :={z|h(x) < h(zo)} is compact , and
@ K is continuously differentiable in some open set containing K.

Then for any sequence {z} defined by this method:

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Global Convergence Results for Modified Newton Method
with Exact Line Search

€ K :={z|h(x) < h(zo)} is compact , and
@ K is continuously differentiable in some open set containing K.

Then for any sequence {z} defined by this method:
€ zr € Kforall k=0,1,.... The sequence {x}} has at least
one accumulation point T in K.

& Each accumulation point T of {x}} is a stationary point of h:

Dh(z) = 0.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Proof for the Method with Exact Line Search: 1

From the definition of the sequence {x;} we have that the sequence
{h(xk)} is monotone, i.e., h(xzg) > h(xz1) > -+ . Hence, x € K for
all k. K is compact; therefore, the sequence {x} has at least

one accumulation point T € K.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Proof for the Method with Exact Line Search: 2-(1)

Assume that T is an accumulation point of {z}} but is not a stationary
point of h:

Dh(z) # 0. 3)

WLOG, let limp_yoo 1 = T.
According to the important lemma, there is a neighborhood U(Z) and a
number A > 0 satisfying

h(w — is) < h() = 1| DA(E)| (4)

forall z € U(Z),s € D(v,z),and 0 < pu < A

Since limy_,o0 T = T, the continuity of Dh(z) together with (3) implies
there is ko such that for all k > kg, z, € U(T) and

IDh(zi)ll = 5| DR@)I-

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Proof for the Method with Exact Line Search: 2-(2)

Let A :=min{)\, 10| Dh(Z)||, € := AY||Dh(Z)||}.

Since A < X\, zy, € U(T), sk € D(Vk, zx), (4) implies that

h(zgs1) < h(xk) — AZ||DR(Z)|| = h(zx) — € forall k> ko.

This means that limg_,. h(zr) = —oo , which contradicts the fact that

h(zy) > h(z) for all k. Hence, T is a stationary point of h.
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Modified Newton Method with Inexact Line Search

@ Choose a starting point g € R™.
Choose numbers v < 1,04,k = 0,1, .., with
inf}, v, > 0, infy o5 > 0.
€ Forall k=0,1,..., obtain z11 from x}, as follows:
@ Select s € D(yk, zk).
Define py, := o ||Dh(zk)||, hi(p) i= h(zr — usk).
Then, determine the smallest integer j > 0 such that
hie(pr277) < hi(0) — p277 | Dh(zy) -

@ Determine i € {0,1,...,j} such that hy(px27%) is minimum and let
A 1= pk2_;.
Then, update zgi1 := Tk — Mg Sk.

[ Note that h(karl) = minlgigj hk(pk2iz)]
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Global Convergence Results for Modified Newton Method
with Inexact Line Search

€ K :={x|h(x) < h(xo)} is compact, and
@ K is continuously differentiable in some open set containing K.

Then for any sequence {z} defined by this method:
€& =z € K forall k=0,1,.... The sequence {z;} has at least
one accumulation point T in K.

& Each accumulation point T of {x}} is a stationary point of h:

Dh(z) = 0.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Proof for the Method with Inexact Line Search: 1

From the definition of the sequence {x;} we have that the sequence
{h(xk)} is monotone, i.e., h(xzg) > h(xz1) > -+ . Hence, x € K for
all k. K is compact; therefore, the sequence {x} has at least

one accumulation point T € K.
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Proof for the Method with Inexact Line Search: 2

Again, we will prove the second result by a contradiction , which is
similar to the previous proof in the section of exact line seach. Assume
that T is an accumulation point of a sequence {zx} but not a stationary
point of A, i.e.,

DR(T) # 0.

By the important lemma and the hypotheses of the global convergence
results, we can show that there is an € > 0 for which

h(zky1) < h(zg) — €

for all k > kqg. This contradicts the fact that h(zy) > h(z) for all k.

Therefore, T is a stationary point of h.
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Quasi-Newton Methods

@ Choose a starting point zg € R™ and an n X n positive definite

matrix Hy. Set go := g(zo).
@ Fork=0,1,... obtain xpy1, Hpy1 from zy, Hy as follows:

@ if gr =0, stop: xy is a stationary point for h. Otherwise
@ compute sy = Hygr(~ H(zx) ‘gx).

@ Update zxi1 = xp — Agsk by means of a minimization
h(zrp41) = min{h(zr — Asg)|A > 0},
G417 = G(Th41), Pk 1= Tl — Thy Gk = Ght1 — Gk-
@ Choose suitable parameters v, > 0,0 > 0, and compute
Hyy1 = (0, veHy, Pr,qe) where
T T
q Hq, pp
pTq "pTq

7, 144

(1-9) T 0 T
Hq-q"H — ——(pq"H + Hgp").
Ha qu(pq ap)

Faculty of Mathematics and Computer Science, Heidelberg University
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Global Convergence Results for Quasi-Newton Method
(BFGS)

& H(T) is positive definite.

[Note that H(z) := ( 82h($))i,k:1,...,n-]

Oxidzk
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Global Convergence Results for Quasi-Newton Method
(BFGS)

& H(T) is positive definite.

& H(z) is Lipschitz continuous at = T.

[Note that H(z) := ( 82h($))i,k:1,...,n-]
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Global Convergence Results for Quasi-Newton Method
(BFGS)

& H(T) is positive definite.
& H(z) is Lipschitz continuous at = T.

& Given constants 0 < ¢; < ¢ < 1,¢1 <

1 .
<5, Tht1 =Tk — AgSk IS
chosen so that

h(zg1) < h(zr) — 1 RGE Sk

T T
k415K < C20j; Sk-

[Note that H(z) := ( 82h($))i,k:1,...,n-]
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Global Convergence Results for Quasi-Newton Method
(BFGS)

& H(T) is positive definite.
@ H(x) is Lipschitz continuous at x = 7.

@ Given constants 0 < ¢; <o < 1,¢1 <
chosen so that

1 . .
5y Thil = T — ApSk IS

h(xgs1) < h(zk) — i RgE sk

T T
Ji+15k < C2%, Sk-

Powell (1975) was able to show that 3V (Z) C U(Z) such that the BFGS
method is superlinearly convergent for all positive definite matrices Hy

and all 7o € V(7). [Note that H(z) := (Z8@)y ) ]
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Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

@& H(T) is positive definite.
& H(x) is Lipschitz continuous at x = 7.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University

Special Topics in Continuous Optimization and Optimal Control



Globalization Schemes
0000000000008

Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

@& H(T) is positive definite.
& H(x) is Lipschitz continuous at x = 7.

@ Tpy1 = Tk — AgSg is chosen so that

A = min{\ > 0|g(xy — )\sk)Tsk = ng,fsk}, |pk] < 1.
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Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

@& H(T) is positive definite.
& H(x) is Lipschitz continuous at x = 7.

@ Tpy1 = Tk — AgSg is chosen so that
e = min{\ > 0|g(z — Asg)Tsp = pngi se}, ] < 1.
& The line search is asymptotically exact , i.e., for large enough &

k| < cllgrll-
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Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

@ H(Z) is positive definite.
& H(x) is Lipschitz continuous at x = 7.
@ Tri11 = Tk — AgSg is chosen so that
A = min{\ > 0|g(xy, — Asp) L sy = ,ukngsk}, |x| < 1.

& The line search is asymptotically exact , i.e., for large enough &

[kl < cllgrll-

It can be shown Stoer (1977) that for all K >0

limz, =7
k

+n — T < yllow — 7
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Conclusions for Local- and Global- Properties of Newton
Methods

@ If a starting point ¢ is chosen sufficiently close to the optimum
point T, under certain assumptions the sequence {z,,} generated by
Newton's method is at least locally convergent .
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Conclusions for Local- and Global- Properties of Newton
Methods

@ If a starting point ¢ is chosen sufficiently close to the optimum
point T, under certain assumptions the sequence {z,,} generated by
Newton's method is at least locally convergent .

€ Under certain conditions, the global convergence of Newton's
method can be obtained by finding parameters A and

search directions sj for the following update, xy11 = T — A Sk.
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Thank you very much for your attention.
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Do you have any question?
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