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Introduction

Problem:
I Finding x∗ such that F (x∗) = 0

I F : Rn → Rn (highly) nonlinear
I Important problem in continuous optimization and optimal control

Newton’s method:
I Iterative method
I Solve linearized problem
I Many variants

Globalization strategies:
I Newton’s method only locally convergent
I Hope to globalize convergence
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Lipschitz Condition
I Given g: [a,b] → R is called Lipschitz continuous with constant λ >

0 (denoted g ε Lipλ[a,b]) if ∃λ > 0 such that
|g(x)− g(y)| ≤ λ|x− y| for all x,y ε [a,b]

Contraction map
I g: [a,b] → R is called contraction map if g ε Lipλ[a,b] with λ < 1

Convex set
I A set C is convex if, for any x,y ε C and θ ε R with 0 ≤ θ ≤ 1,
θx+ (1− θ)yε C

Convex function
I A function f: R→ R is convex if its domain (denoted D(f)) is a

convex set and if, for all x,y ε D(f) and θ ε R with 0 ≤ θ ≤ 1,
I f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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Summary: Newton Method

I Fast (i.e. quadratic) local rate of convergence
I Scale-invariant w.r.t linear transformations of the variables
I Search direction pk is not well defined if ∇2f(xk) is singular, pk is

not a descent if ∇2f(xk) is not positive definite
I Minimum points xk can be attracted to sadle points or local maxima

of f
I Very small neighbourhood of local convergence, Newton’s method is

not globally convergent
I Line search, trust region
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1. Convergence properties of Newton methods

What is convergence?
I Convergence means approaching a limit as the argument of the

function increases or decreases or as the number of terms in the
series increases.

I Types of convergence: local and global

I When does it converge locally? When the initial approximation is
already close enough to the solution, then the succesive
aproximations of the iterative method guranteed to converge to a
solution locally.

I Iterative methods for nonlinear equations and their systems, such as
Newton’s method are usually only locally convergent.
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Rate of convergence

I {xk} ⊂ Rn, x∗εRn, {xk} → x∗ as k →∞
I {xk} → xk with rate r if ‖x

k+1−x∗‖
‖xk−x∗‖r = c <∞, for sufficiently large k

I r=1: linear convergence (c < 1)
I r=2: quadratic convergence

I superlinear convergence: ‖x
k+1−x∗‖
‖xk−x∗‖r → 0 as k →∞

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Local Convergence Theorem
I Single dimension: If
I ∂f

∂x bounded away from zero

I ∂2f
∂x2 bounded

I Then Newton’s method converges given a sufficiently close initial
guess (and convergence is quadratic)

Multidimensional
I If ‖J−1F (xk)‖ ≤ β (inverse is bounded)
I ‖JF (x)− JF (y)‖ ≤ l‖x− y‖ (Derivative is Lipschitz continuous)
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Example 1

I We see that the convergence is quadratic
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Example 2

I Note: ∂f
∂x

−1
not bounded away from zero

I We see the convergence is linear
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Plot
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Convergence algorithm
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Advantages of Newton Method:

I Quadratic converges
I Requires only one guess
I This is very fast if we are close to a solution
I Doubles the correct digits in each iteration!
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Drawbacks of Newton methods:

I Divergence at inflection points: If the initial guess or an iteration
value of the root that is close to the inflection point of the function.

Figure: Divergence at inflection points
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Drawbacks: Division by zero

I f(x) = x3 − 0.03x2 + 2.4× 10−6 = 0

Figure: Pitfall of division by zero or near a zero number

I For x0 = 0orx0 = 0.02 the denominator will be zero
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Drawbacks: Oscillations

I Oscillations near local maxima and minimum
I Results may oscillate abut the local maximum or minimum without

converging on a root but converging on the local maximum or
minimum.

I Leads to division by a number close to zero and may diverge.
I f(x) = x2 + 2 = 0 has no real roots
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Figure: Oscillations around local minima for f(x) = x2 + 2
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Drawbacks: Root jumping

I In some cases, where the function f(x) is oscillating and has a
number of roots, one may choose an initial guess close to a root.

I However, the guesses may jump and converge to some other root.

Figure: Root jumping from intended location of root for f(x)=sin x
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Theorem

I Theorem. Let Φ : Rn → Rn be an iterative function with fixed point
ξ. U(ξ) is a neighbourhood of ξ, a number p ≥ 1 and a constant C
≥ 0 (with C ≤ 1 if p = 1) so that for all x ε U(ξ)

‖Φ(x)− ξ‖ ≤ C‖x− ξ‖p (1)

I Then there is a neighbourhood (subset) V(ξ) ⊂ U(ξ) of ξ so that for
all starting points x0 the iteration method defined by Φ geneerates
the iteration steps xi ε V(ξ) ∀ i ≥ 0 that converges to ξ at least
with order p
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Example

I E=R, Φ is differentiable in a neighbourhood U(ξ) If 0 < Φ′(ξ) < 1,
then the convergence will be linear (first order), xi will converge
monotonically to ξ

I

Figure: Monotone convergence
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General Convergence Theorem

I Let the function Φ: E → E, E= Rn, have a fixed point ξ: Φ (ξ) = ξ

I Further let Sr(ξ):={ z |‖ z - ξ‖ < r} be a neighbourhood of ξ such
that Φ is a contractive mapping in Sr (ξ) that is

‖Φ(x)− Φ(y)‖ ≤ K‖x− y‖ (2)

0 ≤ K < 1 for all x,y ε Sr(ξ). Then for any x0 ε Sr(ξ), the
generated sequence xi+1 = Φ(xi), i =0,1,.., has the following
properties
label=) xiε Sr(ξ) ∀ i=0,1,..,
lbbel=) ‖xi+1 − ξ‖ ≤ K‖xi − ξ‖ ≤ Ki+1‖x0 − ξ‖ i.e., {xi} converges at

least linearly to ξ
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Banach Fixed Point Theorem

I Let Φ : E → E, E = Rn be an iterative fucnction, x0εE be a
starting point, and xi+1 = Φ(xi), i=0,1, ... Further,let a
neighbourhood Sr(x0) = {x|‖x− x0‖ < r} of x0 and a constant K
where 0 < K < 1, exist such that
label=) ‖Φ(x)−Φ(y)‖ ≤ K‖x− y‖ for all x,y ε Sr(x0) := {x|‖x− x0‖ ≤ r}
lbbel=) ‖x1 − x0‖ = ‖Φ(x0)− x0‖ ≤ (1 - K)r < r
Then it follows that

xi ε Sr(x0)∀ i = 0, 1, ...,
Φ has exactly one fixed point ξ, Φ(ξ) = ξ, in Sr(x0) and lim

i→∞
xi = ξ,

‖xi+1 − ξ‖ ≤ K‖xi − ξ‖, as well as ‖x1 − ξ‖ ≤ Ki

1−K ‖x1 − x0‖
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Proof of quadratic convergence

Figure:
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Minimization Problems

We consider the following minimization problem for a real function
h : Rn → R of n variables

min
x
h(x).
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Definition of Global Convergence

I The iterative method is called locally convergent with V (x) , a
neigborhood of x, if it generates, for all starting points x0 ∈ V (x), a
sequence {xk} that converges to x.

I It is called globally convergent , if in addition V (x) = Rn.

[Note that x is a minimum point for the function h.]
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Important Lemma

label=()Let h : Rn → R be a function which has a continuous derivative
Dh(x) for all x ∈ V (x).

lbbel=()Suppose further that Dh(x) 6= 0 , and let 1 ≥ γ > 0.

[ Note that D(γ, x) := {s ∈ Rn|‖s‖ = 1, Dh(x)s ≥ γ‖Dh(x)‖} and
Dh(x) = ∇h(x)T = ( ∂h(x)∂x1 , · · · , ∂h(x)∂xn ) .]
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Important Lemma

label=()Let h : Rn → R be a function which has a continuous derivative
Dh(x) for all x ∈ V (x).

lbbel=()Suppose further that Dh(x) 6= 0 , and let 1 ≥ γ > 0.

Then there is a neighborhood U(x) ⊆ V (x) of x and a number λ > 0
such that

h(x− µs) ≤ h(x)− µγ

4
‖Dh(x)‖

for all x ∈ U(x), s ∈ D(γ, x) and 0 ≤ µ ≤ λ.
[ Note that D(γ, x) := {s ∈ Rn|‖s‖ = 1, Dh(x)s ≥ γ‖Dh(x)‖} and
Dh(x) = ∇h(x)T = ( ∂h(x)∂x1 , · · · , ∂h(x)∂xn ) .]
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Globalization Schemes

I Modified Newton Method with Exact Line Search
I Modified Newton Method with Inexact Line Search
I Quasi-Newton Method

− BFGS
− Oren-Luenberger
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Modified Newton Method with Exact Line Search

label=()Choose a starting point x0 ∈ Rn.
Choose numbers γk ≤ 1, σk, k = 0, 1, .., with
infk γk > 0, infk σk > 0.

lbbel=()For all k = 0, 1, ..., update

xk+1 := xk − λksk

where sk ∈ D(γk, xk), and λk ∈ [ 0, σk‖Dh(xk)‖] is such that

h(xk+1) = min
µ
{h(xk − µsk) : 0 ≤ µ ≤ σk‖Dh(xk)‖}.
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Global Convergence Results for Modified Newton Method
with Exact Line Search

label=() K := {x|h(x) ≤ h(x0)} is compact , and

lbbel=() h is continuously differentiable in some open set containing K.

label = (0)xk ∈ K for all k = 0, 1, .... The sequence {xk} has at least
one accumulation point x in K.

lbbel = (0)Each accumulation point x of {xk} is a stationary point of h:

Dh(x) = 0.
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label=() K := {x|h(x) ≤ h(x0)} is compact , and

lbbel=() h is continuously differentiable in some open set containing K.

Then for any sequence {xk} defined by this method:
label = (0)xk ∈ K for all k = 0, 1, .... The sequence {xk} has at least

one accumulation point x in K.

lbbel = (0)Each accumulation point x of {xk} is a stationary point of h:

Dh(x) = 0.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Modified Newton Method
with Exact Line Search

label=() K := {x|h(x) ≤ h(x0)} is compact , and

lbbel=() h is continuously differentiable in some open set containing K.

Then for any sequence {xk} defined by this method:
label = (0)xk ∈ K for all k = 0, 1, .... The sequence {xk} has at least

one accumulation point x in K.

lbbel = (0)Each accumulation point x of {xk} is a stationary point of h:

Dh(x) = 0.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Proof for the Method with Exact Line Search: 1

From the definition of the sequence {xk} we have that the sequence
{h(xk)} is monotone, i.e., h(x0) ≥ h(x1) ≥ · · · . Hence, xk ∈ K for
all k. K is compact; therefore, the sequence {xk} has at least
one accumulation point x ∈ K.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Proof for the Method with Exact Line Search: 2-(1)

Assume that x is an accumulation point of {xk} but is not a stationary
point of h:

Dh(x) 6= 0. (3)

WLOG, let limk→∞ xk = x.
According to the important lemma, there is a neighborhood U(x) and a
number λ ≥ 0 satisfying

h(x− µs) ≤ h(x)− µγ
4
‖Dh(x)‖ (4)

for all x ∈ U(x), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.
Since limk→∞ xk = x, the continuity of Dh(x) together with (3) implies
there is k0 such that for all k ≥ k0, xk ∈ U(x) and
‖Dh(xk)‖ ≥ 1

2‖Dh(x)‖.
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Proof for the Method with Exact Line Search: 2-(2)

Let Λ := min{λ, 12σ‖Dh(x)‖, ε := Λγ
4 ‖Dh(x)‖}.

Since Λ ≤ λ, xk ∈ U(x), sk ∈ D(γk, xk), (4) implies that
h(xk+1) ≤ h(xk)− Λγ

4 ‖Dh(x)‖ = h(xk)− ε for all k ≥ k0.

This means that limk→∞ h(xk) = −∞ , which contradicts the fact that

h(xk) ≥ h(x) for all k. Hence, x is a stationary point of h.
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Modified Newton Method with Inexact Line Search

label=()Choose a starting point x0 ∈ Rn.
Choose numbers γk ≤ 1, σk, k = 0, 1, .., with
infk γk > 0, infk σk > 0.

lbbel=()For all k = 0, 1, ..., obtain xk+1 from xk as follows:
label=()Select sk ∈ D(γk, xk).

Define ρk := σk‖Dh(xk)‖, hk(µ) := h(xk − µsk).
Then, determine the smallest integer j ≥ 0 such that
hk(ρk2−j) ≤ hk(0)− ρk2−j γk

4
‖Dh(xk)‖.

lbbel=()Determine i ∈ {0, 1, ..., j} such that hk(ρk2−i) is minimum and let

λk := ρk2−i.

Then, update xk+1 := xk − λksk.

[ Note that h(xk+1) = min1≤i≤j hk(ρk2−i).]
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Global Convergence Results for Modified Newton Method
with Inexact Line Search

label=()K := {x|h(x) ≤ h(x0)} is compact, and
lbbel=()h is continuously differentiable in some open set containing K.

Then for any sequence {xk} defined by this method:
label = (0)xk ∈ K for all k = 0, 1, .... The sequence {xk} has at least

one accumulation point x in K.

lbbel = (0)Each accumulation point x of {xk} is a stationary point of h:

Dh(x) = 0.
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Proof for the Method with Inexact Line Search: 1

From the definition of the sequence {xk} we have that the sequence
{h(xk)} is monotone, i.e., h(x0) ≥ h(x1) ≥ · · · . Hence, xk ∈ K for
all k. K is compact; therefore, the sequence {xk} has at least
one accumulation point x ∈ K.
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Proof for the Method with Inexact Line Search: 2

Again, we will prove the second result by a contradiction , which is
similar to the previous proof in the section of exact line seach. Assume
that x is an accumulation point of a sequence {xk} but not a stationary
point of h, i.e.,

Dh(x) 6= 0.

By the important lemma and the hypotheses of the global convergence
results, we can show that there is an ε ≥ 0 for which

h(xk+1) ≤ h(xk)− ε

for all k > k0. This contradicts the fact that h(xk) ≥ h(x) for all k.

Therefore, x is a stationary point of h.
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Quasi-Newton Methods

label=()Choose a starting point x0 ∈ Rn and an n× n positive definite
matrix H0. Set g0 := g(x0).

lbbel=()For k = 0, 1, ... obtain xk+1, Hk+1 from xk, Hk as follows:
label=() if gk = 0, stop: xk is a stationary point for h. Otherwise
lbbel=()compute sk := Hkgk(≈ H(xk)−1gk) .

lcbel=()Update xk+1 = xk − λksk by means of a minimization

h(xk+1) ≈ min{h(xk − λsk)|λ ≥ 0},

gk+1 := g(xk+1), pk := xk+1 − xk, qk := gk+1 − gk.
ldbel=()Choose suitable parameters γk > 0, θk ≥ 0, and compute

Hk+1 = ψ(θk, γkHk, pk, qk) where

ψ(θ,H, p, q) := H + (1 + θ
qTHq

pT q
)
ppT

pT q

− ( 1− θ)
qTHq

Hq · qTH − θ

pT q
(pqTH +HqpT ).

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method
(BFGS)

label = () H(x) is positive definite.

lbbel = () H(x) is Lipschitz continuous at x = x.

lcbel = ()Given constants 0 < c1 < c2 < 1, c1 ≤ 1
2 , xk+1 = xk − λksk is

chosen so that

h(xk+1) ≤ h(xk)− c1λkgTk sk,

gTk+1sk ≤ c2gTk sk.

[Note that H(x) := ( ∂2h(x)
∂xi∂xk ) i,k=1,...,n.]

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method
(BFGS)

label = () H(x) is positive definite.

lbbel = () H(x) is Lipschitz continuous at x = x.

lcbel = ()Given constants 0 < c1 < c2 < 1, c1 ≤ 1
2 , xk+1 = xk − λksk is

chosen so that

h(xk+1) ≤ h(xk)− c1λkgTk sk,

gTk+1sk ≤ c2gTk sk.

[Note that H(x) := ( ∂2h(x)
∂xi∂xk ) i,k=1,...,n.]

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method
(BFGS)

label = () H(x) is positive definite.

lbbel = () H(x) is Lipschitz continuous at x = x.

lcbel = ()Given constants 0 < c1 < c2 < 1, c1 ≤ 1
2 , xk+1 = xk − λksk is

chosen so that

h(xk+1) ≤ h(xk)− c1λkgTk sk,

gTk+1sk ≤ c2gTk sk.

[Note that H(x) := ( ∂2h(x)
∂xi∂xk ) i,k=1,...,n.]

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method
(BFGS)

label = () H(x) is positive definite.

lbbel = () H(x) is Lipschitz continuous at x = x.

lcbel = ()Given constants 0 < c1 < c2 < 1, c1 ≤ 1
2 , xk+1 = xk − λksk is

chosen so that

h(xk+1) ≤ h(xk)− c1λkgTk sk,

gTk+1sk ≤ c2gTk sk.

Powell (1975) was able to show that ∃V (x) ⊆ U(x) such that the BFGS
method is superlinearly convergent for all positive definite matrices H0

and all x0 ∈ V (x). [Note that H(x) := ( ∂2h(x)
∂xi∂xk ) i,k=1,...,n.]
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Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

label = ()H(x) is positive definite.
lbbel = ()H(x) is Lipschitz continuous at x = x.
lcbel = ()xk+1 = xk − λksk is chosen so that

λk = min{λ ≥ 0|g(xk − λsk)T sk = µkg
T
k sk}, |µk| < 1.

ldbel = () The line search is asymptotically exact , i.e., for large enough k

|µk| ≤ c‖gk‖.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

label = ()H(x) is positive definite.
lbbel = ()H(x) is Lipschitz continuous at x = x.
lcbel = ()xk+1 = xk − λksk is chosen so that

λk = min{λ ≥ 0|g(xk − λsk)T sk = µkg
T
k sk}, |µk| < 1.

ldbel = () The line search is asymptotically exact , i.e., for large enough k

|µk| ≤ c‖gk‖.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)

label = ()H(x) is positive definite.
lbbel = ()H(x) is Lipschitz continuous at x = x.
lcbel = ()xk+1 = xk − λksk is chosen so that

λk = min{λ ≥ 0|g(xk − λsk)T sk = µkg
T
k sk}, |µk| < 1.

ldbel = () The line search is asymptotically exact , i.e., for large enough k

|µk| ≤ c‖gk‖.

Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
Special Topics in Continuous Optimization and Optimal Control



Introduction Background Local Conv. Failures: NM Theorems Global Conv. Globalization Schemes Conclusion

Global Convergence Results for Quasi-Newton Method (A
Subclass of Oren-Luenberger)
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lbbel = ()H(x) is Lipschitz continuous at x = x.
lcbel = ()xk+1 = xk − λksk is chosen so that

λk = min{λ ≥ 0|g(xk − λsk)T sk = µkg
T
k sk}, |µk| < 1.

ldbel = () The line search is asymptotically exact , i.e., for large enough k

|µk| ≤ c‖gk‖.

It can be shown Stoer (1977) that for all k ≥ 0

lim
k
xk = x

‖xk+n − x‖ ≤ γ‖xk − x‖2

for all positive definite initial matrices H0 and for ‖x0 − x‖ small enough.Mitodru Niyogi, Sumet Khumphairan Faculty of Mathematics and Computer Science, Heidelberg University
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Conclusions for Local- and Global- Properties of Newton
Methods

label=() If a starting point x0 is chosen sufficiently close to the optimum
point x, under certain assumptions the sequence {xn} generated by
Newton’s method is at least locally convergent .

lbbel=()Under certain conditions, the global convergence of Newton’s

method can be obtained by finding parameters λk and

search directions sk for the following update, xk+1 = xk − λksk.
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Thank you very much for your attention.
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Do you have any question?
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