
Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Neural Code Synthesis and Completion

Presented by: Mitodru Niyogi1

Supervised by: Prof. Dr. Artur Andrzejak1 and Dr. Dejan Kovachev2

1Interdisciplinary Center for Scientific Computing,
Heidelberg University

2SAP Berlin
mitodru.niyogi@stud.uni-heidelberg.de

August 25, 2021

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Outline

1 Introduction

2 Problem Definition

3 Aims

4 Challenges

5 Background

6 System Design

7 Results & Discussion

8 Conclusion

9 Appendix

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Introduction

Can AI write code? YES!

The use of natural language (NL) by a developer to express coding intention and
get it translated into code segments, is an interesting problem that,

if solved, can reduce the need for developers to search online sources or prevalent
documentation for helpful code snippets.

Current Limitations:

The current approaches are unable to extract semantic information from the
coding intents of the developer.

In earlier NL to code systems, researchers focused mainly on the task of semantic
parsing.

These systems made heavy use of hand-crafted rules and could only work on a
limited examples with a restricted NL syntax.

Hence they are in-extensible and expensive for real-world deployment.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Problem Definition

The problem can be further thought of developing an AI system that

translates NL into code on the go, such as by assisting the developer by
generating source code given NL intent.

The model should understand the context of the intent and the source code of
the program.

Extending its usability for an assistive code completion feature to predict the next
code tokens given the previous tokens.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Goal

Natural language to code translation

Aims to develop a versatile Seq2Seq architecture for both objectives of
translating text to code (NL2Code) and of generating comments, docstring,
method documentation from source code input (Code2NL).

Aims to use various neural-based subword tokenizers to incorporate the
contextual embeddings of the input.

Aims at performing an ablation study to gauge the importance of the crucial
components of the developed AI system.

Aims to develop transfer learning and data augmentation techniques to generate
more diverse and accurate source code translations.

Code completion

Aims to develop a novel RoBERTa based neural language model for source code.

Aims at investing the performance of the model for the fill-in-mask task and
compare the predicted masked tokens with the ground truth.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Challenges

Lack of big (NL,code) pair corpora
The absence of a proper large (NL, code) pair annotated dataset limited us in exploring
the full capacity of our proposed developed deep learning model.

GPU memory limitations

Syntax decoding and lack of diverse output
Generative models often suffer from the lack of diverse and repetitive text generation.

Evaluation Metric
Both BLEU and ROUGE metrics neglect the important syntactic and semantic features
of codes.
Perfect accuracy is too strict to consider the different correct outputs with the same
semantic logic.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Background: BERT

Attention-based bidirectional language model.
Single encoder-style transformer block consisting of a multi-headed attention
block followed by a small fully-connected network.
Each block uses A self-attention heads and hidden dimension H.

Figure: Overall pre-training and fine-tuning procedures for BERT. Figure taken from [1]

Figure: Encoding representation in BERT. Figure drawn from [1].Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RoBERTa

The BERT architecture was modified to develop RoBERTa as follows:

training the BERT model longer over more data, with larger batches

removing the next sentence prediction (NSP) objective from BERT

training on longer sequences

dynamic masking pattern applied to the training data

dynamic masking is where the masking pattern was generated every time for
every input sequence to avoid using the same mask for each training instance in
every epoch.

Specifically, RoBERTa is trained with dynamic masking, FULL-SENTENCES
without NSP loss pretraining objective, and large mini-batches.

FULL-SENTENCES: each input is packed with full sentences sampled
contiguously from one or more documents, such that the total length is at most
512 tokens.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

BART

BART is a denoising autoencoder built with a sequence-to-sequence model.

BART has Transformer based bidirectional Encoder and an autoregressive
decoder that is applicable to a very wide range of end tasks.

BART is trained by corrupting documents and then optimizing a reconstruction
loss—the cross-entropy between the decoder’s output and the original document.

Figure: A schematic representation of BART. Figure drawn from [3].

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

BART: Pre-training objectives

Pretraining has two stages:

text is corrupted with an arbitrary noising function.

A sequence-to-sequence model is learned to reconstruct the original text.

Figure: Transformations as part of Pre-training objectives for noising the input in BART. Figure
drawn from [3].

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Evaluation Metrics

BLEU

BLEU (bilingual evaluation understudy) [6] measures the translation closeness by
counting matches of n-grams in candidate and reference translation.
BLEU metric does not take into account the intelligibility or grammatical
correctness of a translated text.
The BLEU is defined by

BP =

{
1 if c > r

exp(1− r
c

) if c ≤ r
(1)

BLEU = BP · exp(
N∑

n=1

1

N
log pn) (2)

Sentence-BLEU: computes the BLEU metric on a single sentence pair. It
calculates the averaging of the macro-average precision.

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric [4] measures
the n-gram overlap between generated translation and its reference translation.
ROUGE-N: measures unigram, bigram, trigram, and higher-order n-gram overlap.
ROUGE-L: measures the longest matching sequence of words using Longest
Common Subsequence (LCS) algorithm.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

System Design

Dataset

Intent How can I convert a tensor into a numpy array in TensorFlow?
Code print(type(tf.Session().run(tf.constant([1, 2, 3]))))
Rewritten Intent Convert a tensor with list of constants ‘[1, 2, 3]‘ into a numpy array

in tensorflow

Table: CoNaLa Dataset Sample

Dataset Number of samples
Train 1903
Validation 476
Test 500
Mined 100k train set 96179
Mined 100k valid set 10687
Mined 30k train set 31741
Mined 30k valid set 7935

Table: CoNaLa Dataset

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Dataset Statistics

Average length of nl intent 46.53
Max length of nl intent 122.00

Median length of nl intent 45.00
Mode length of nl intent 46.00

Average length of code snippet 39.77
Max length of code snippet 232.00

Median length of code snippet 38.00
Mode length of code snippet 33.00

Table: Length statistics of CoNaLa data attributes..

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Augmented Dataset Creation

To make the training data larger, we used the idea to generate back translation
by reversing the training objective, i.e., Code2NL, generating natural language
intent from the code snippets.

How? We first trained a model for the Code2NL objective and using this model,
we generated the predicted natural language intent from the code snippets for
both the training and the validation set

This made us augment both the training and the validation set by 1x , 2x , or even
kx depending on the top-k predictions retrieved from the Code2NL model.

Augmented curated datasets using back-translation:
Top-1 from intent and top-1 from rewritten intent resulted into 3x dataset.
Top-2 from intent and top-2 from rewritten intent resulted into 5x dataset.
Top-1 from rewritten intent resulted into 2x dataset.
Top-2 from rewritten intent resulted into 3x dataset.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Proposed System Architecture

Figure: Proposed System Architecture

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Experimental Results and Discussion

RQ1. Results & Analysis: How well does the developed architectures perform on
the NL2Code objective in comparison to the state-of-the-art?

Models trained on Dataset/Augmented Datasets Test BLEU
Seq2Seq-BART on 3x size of CoNaLa dataset 25.7710
Seq2Seq-BART on 5x size of CoNaLa dataset 25.1601

Seq2Seq-BART on CoNaLa dataset 24.2990
Fine-tuned Seq2Seq-BART on CoNaLa,, pretrained on mined100k corpus 26.5379

Fine-tuned Seq2Seq-BART on 3x CoNaLa, pretrained on mined100k corpus 27.8235
Fine-tuned Seq2Seq-BART on 5x CoNaLa, pretrained on mined100k corpus 25.3153

Vanilla Seq2Seq on CoNaLa 13.3270
Transformer-CoNaLa code tokenizer on CoNaLa 15.3834

Transformer-BPE on CoNaLa 19.3402
Transformer-Unigram on CoNaLa 20.9678

Transformer-WordPiece on CoNaLa 17.3237
Seq2Seq-RoBERTa without pretraining 17.0032

Fine-tuned Seq2Seq-RoBERTa on CoNaLa, pretrained on mined30k corpus 18.8853
TranX on CoNaLa 25.1050

Table: Overall Comparison of all models on Test set.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Qualitative Evaluation

Model
Exact match
(Sentence-BLEU
>0.9)

Mostly Correct
(Sentence-BLEU
>= 0.6
and <= 0.9)

Marginally Correct
(Sentence-BLEU
>=0.4
and <=0.6)

Semantically Equivalent
(Sentence-BLEU
>=0.2
and <=0.4)

Number of
Compilable
Snippets

Fine-tuned Seq2Seq-BART 23 66 101 142 326
Seq2Seq-BART w/o pretraining 16 54 110 141 340
Fine-tuned Seq2Seq-RoBERTa 5 35 89 148 425
Seq2Seq-RoBERTa w/o pretraining 3 16 68 170 277
Transformer-CoNaLa tokenizer 2 22 80 179 138
Vanilla Seq2Seq 1 15 75 191 73

Table: Comparison on classifying the translations into categories.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Figure: Comparison of test predictions: fine-tuned Seq2Seq-BART v/s Seq2Seq-BART.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Figure: Comparison of test predictions: fine-tuned Seq2Seq-BART v/s Seq2Seq-BART.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RQ2. What did we find from the ablation studies of the developed
architectures?

Ablation study of the self-attention heads of Transformer

Attention heads Validation BLEU Test BLEU Validation RougeL F1 Test RougeL F1 Validation token accuracy Test token accuracy
2 20.6100 16.7480 0.5730 0.5497 16.5211 13.5680
4 21.6802 17.3580 0.5871 0.5598 18.4361 14.3770
8 23.5436 17.6857 0.6074 0.5707 17.2164 14.1223

16 22.8340 17.2390 0.5957 0.5594 16.8025 13.4464
32 22.3587 17.7187 0.5977 0.5725 18.3544 15.0941

Table: Ablation study of the self-attention heads of Transformer while keeping the number of layers
fixed at 3.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Ablation study on the number of layers of Transformer

Number of layers Validation BLEU Test BLEU Validation RougeL F1 Test RougeL F1 Validation token accuracy Test token accuracy
1 18.7609 15.2000 0.5673 0.5400 15.7220 14.3319
2 21.4045 16.1740 0.5779 0.5469 18.0871 15.5930
3 21.9000 16.2420 0.5976 0.5716 20.1941 16.6751
4 21.1420 15.0200 0.5892 0.5539 18.9563 15.5323
5 22.1571 15.0414 0.5899 0.5493 19.7900 16.4548
6 19.1737 16.0100 0.5743 0.5642 15.6427 14.2967

Table: Ablation study on the number of layers of Transformer while keeping the attention heads
fixed at 8.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Ablation study: Seq2Seq-RoBERTa on self-attention heads

Attention heads Decoding method Test BLEU Test Rouge1 Precision Test Rouge1 Recall Test Rouge1 F1-score

2

Greedy 12.8621 0.3469 0.3259 0.3139
Beam size = 4 12.8621 0.3469 0.3259 0.3139
Beam size = 7 12.6930 0.3371 0.3221 0.3066

Beam size = 10 12.8602 0.3375 0.3227 0.3072
Beam size = 15 12.7773 0.3380 0.3243 0.3076

4

Greedy 13.2852 0.3357 0.3054 0.2988
Beam size = 4 13.9182 0.3273 0.3144 0.3000
Beam size = 7 14.0908 0.3291 0.3216 0.3050

Beam size = 10 13.9419 0.3279 0.3211 0.3045
Beam size = 15 13.8604 0.3275 0.3202 0.3039

6

Greedy 13.3928 0.3197 0.3110 0.2938
Beam size = 4 13.3928 0.3197 0.3110 0.2938
Beam size = 7 13.3976 0.3085 0.3106 0.2871

Beam size = 10 13.5370 0.3110 0.3128 0.2897
Beam size = 15 13.4991 0.3088 0.3111 0.2878

8

Greedy 13.4887 0.3544 0.3075 0.3109
Beam size = 4 13.6894 0.3366 0.3103 0.3048
Beam size = 7 13.8962 0.3365 0.3125 0.3050

Beam size = 10 13.8202 0.3365 0.3114 0.3050
Beam size = 15 13.8844 0.3364 0.3143 0.3062

12

Greedy 13.3493 0.3474 0.3179 0.3117
Beam size = 4 13.8000 0.3399 0.3261 0.3126
Beam size = 7 13.9197 0.3340 0.3253 0.3095

Beam size = 10 14.0733 0.3337 0.3260 0.3096
Beam size = 15 14.0307 0.3350 0.3265 0.3150

Table: Ablation study on the number of self-attention heads for DistilRoBERTa while keeping
layers fixed at 1. (batch size=8, 50 epochs)

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Ablation study: Depth of Seq2Seq-RoBERTa layers

Number of layers Decoding Method Test BLEU Rouge1 F1 Rouge2 F1 RougeL F1

3

Greedy 14.2945 0.3238 0.1148 0.3106
Beam size= 4 15.1319 0.3258 0.1240 0.3127

Beam size = 10 15.3172 0.3268 0.1250 0.3139
Beam Size = 15 15.2510 0.3254 0.1246 0.3125

5

Greedy 15.2415 0.3506 0.1248 0.3349
Beam size= 4 15.9160 0.3520 0.1267 0.3334
Beam size= 7 15.9965 0.3525 0.1276 0.3340

Beam Size = 10 16.0659 0.3525 0.1256 0.3337
Beam Size = 15 16.0700 0.3508 0.1274 0.3330

Table: Ablation study on the depth of RoBERTa layers in the hybrid Se2Seq while keeping the
attention heads to be 8. (batch size=8, 50 epochs)

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RQ3. Does the SentencePiece tokenizer improve the performance of the
Transformer model?

Tokenizer BLEU Rouge1 F1 Rouge2 F1 Rouge4 F1 RougeL F1 Token Accuracy
WordPiece 17.3237 0.6786 0.5339 0.2448 0.6786 9.1647
Unigram 20.9678 0.6718 0.5214 0.2376 0.6718 12.5242

BPE 19.3402 0.6937 0.5495 0.2567 0.6937 10.1486
CoNaLa code tokenizer 15.3834 0.5449 0.2628 0.1311 0.5347 14.7041

Table: Test metrics for Transformer using SentencePiece tokenizers.

The transformer-Unigram performed better by 36.30%, the
transformer-WordPiece performed better by 12.6% and the transformer- BPE
performed better by 25.72% over the CoNaLa code tokenizer.

Advantages of using subword unit LM for code:
Firstly, as the model had a smaller vocabulary size due to reduced level of data sparsity,
it might have better performance over the non-subword tokenizers.
Secondly, the model could handle the OoV problem by synthesizing the missing OoV
tokens that were seen in the training data using the smaller subtoken units.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RQ4. Do data augmentation and pretraining techniques improve the results
of the proposed hybrid Seq2Seq-BART architecture?

Transfer learning is a means of extracting knowledge from a source setting and
applying it to a different target setting.

A pretrained model is a saved network that was previously trained on a large
unannotated dataset, typically on large-scale (NL, code) pairs for our task.

These weights can be reused to fine-tune the pretrained model on the smaller
training annotated dataset.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Do pretraining knowledge and transfer learning help to improve the results?

Seq2Seq-BART on Augmented Datasets Test BLEU
Seq2Seq-BART on 3x size of original dataset 25.7710
Seq2Seq-BART on 5x size of original dataset 25.1601

Seq2Seq-BART on CoNaLa dataset 24.2990
Fine-tuned Seq2Seq-BART on CoNaLa, pretrained on mined100k corpus 26.5379

Fine-tuned Seq2Seq-BART on 3x CoNaLa, pretrained on mined100k corpus 27.8235
Fine-tuned Seq2Seq-BART on 5x CoNaLa, pretrained on mined100k corpus 25.3153

TranX on CoNaLa train dataset 25.1050

Table: Results of Seq2Seq-BART models on Augmented Datasets.

The fine-tuning these pretrained hybrid Seq2Seq architectures on the training set
improved the test BLEU score metric by 9.2% over non-pretrained
Seq2Seq-BART architecture and by 11.2% over non-pretrained
Seq2Seq-RoBERTa.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RQ5. Does the proposed hybrid Seq2Seq-BART architecture work
bidirectionally to reverse the hypothesis?

We reversed the input and the output for the Seq2Seq-BART architecture.

We used the same values for the hyperparameters used for the Nl2Code-BART
model.

We observed that the proposed architecture worked quite well for the reversed
hypothesis.

BLEU Rouge1 F1 Rouge2 F1 RougeL F1 METEOR
21.80291 0.45516 0.21644 0.407032 0.3050

Table: Test metrics for the Code2NL.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RQ6. How well does the code completion task work with the use of neural
language model?

A code completion system suggests pieces of code by understanding the context of the
incomplete code snippet written by the developer.
Approach

We derived a contextual embedding and language modeling of source code by
training a RoBERTa model on Algorithms’ Python code repositories.

We used the subword tokenizer, ByteLevel BPE, to model the source code then
trained the RoBERTa tokenizer for source code.

We finally performed the fill-in mask token task to judge the performance of the
model.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Fill Mask task Prediction/Output Score
”<mask>os” ‘import os’ 0.9979

if (x is not None) <mask>(x > 1)

’if (x is not None) and (x>1) 0.6732
’if (x is not None) / (x>1) 0.0770

’if (x is not None) — (x>1) 0.0769
if (x is not None) or (x>1) 0.0291

if self.graph[u].count([w, v]) <mask>0:
if self.graph[u].count([w, v]) == 0: 0.5888
’if self.graph[u].count([w, v])!= 0:’ 0.3329
if self.graph[u].count([w, v]) >0: 0.0360

sum = a <mask>b

sum = a * b 0.7289
sum = a + b 0.1288
’sum = a - b 0.0186

sum = a // b’ 0.0118

mdist = [<mask>for i in range(V)]

mdist = [0 for i in range(V)] 0.7845
mdist = [i for i in range(V)] 0.0978

mdist = [True for i in range(V)] 0.0320
mdist = [False for i in range(V)] 0.0235

mdist = [1 for i in range(V)] 0.0088

Table: Fill-mask task for code completion.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Conclusion

Parsable Python source code snippets can be directly generated from NL intent
using deep learning architectures, without necessarily using heavily feature
engineered semantic parsers.

The proposed Seq2Seq-BART architecture has resulted in generating better code
translations from NL and has exceeded the performance of the vanilla Seq2Seq,
Transformer, the proposed Seq2Seq-RoBERTa architectures, and the
state-of-the-art neural semantic parser, TranX on BLEU-4 metric score for
NL2Code on CoNaLa dataset.

The code generation of the proposed algorithm can be improved by using the
pretraining approach and the data augmentation techniques.

The output from the Transformer architecture can be improved for the Nl2Code
task by using subword tokenizers (BPE).

RoBERTa based language model for Python source code has been highly effective
for code completion task.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Future Work

Explore our novel hybrid Seq2Seq architecture on more datasets such as Django
[5], WikiSQL [12] to see how well the proposed architecture generalizes to other
programming languages and language-specific domains.

Incorporate ASTs into our proposed architecture.

Evaluate the model using BERTSCORE [11] as an evaluation metric for the
translated code snippets.

Allow the proposed system to explore contextual awareness over multiple lines of
source code by creating a dataset of (NL, method definition) to train our
proposed architecture to generate multi-line source code snippets as generating
an entire function code.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

References I

[1] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019,
pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://www.aclweb.org/anthology/N19-1423.

[2] Taku Kudo. Subword Regularization: Improving Neural Network Translation
Models with Multiple Subword Candidates. 2018. arXiv: 1804.10959 [cs.CL].

[3] Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension. 2019. arXiv:
1910.13461 [cs.CL].

[4] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”.
In: Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, July 2004, pp. 74–81. url:
https://www.aclweb.org/anthology/W04-1013.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1910.13461
https://www.aclweb.org/anthology/W04-1013

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

References II

[5] Yusuke Oda et al. “Learning to Generate Pseudo-code from Source Code Using
Statistical Machine Translation”. In: Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). ASE ’15.
Lincoln, Nebraska, USA: IEEE Computer Society, Nov. 2015, pp. 574–584. isbn:
978-1-5090-0025-8. doi: 10.1109/ASE.2015.36. url:
https://doi.org/10.1109/ASE.2015.36.

[6] Kishore Papineni et al. “BLEU: A Method for Automatic Evaluation of Machine
Translation”. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics. ACL ’02. Philadelphia, Pennsylvania: Association for
Computational Linguistics, 2002, pp. 311–318. doi: 10.3115/1073083.1073135.
url: https://doi.org/10.3115/1073083.1073135.

[7] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:
2019.

[8] Mike Schuster and Kaisuke Nakajima. “Japanese and Korean voice search”. In:
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2012, pp. 5149–5152. doi: 10.1109/ICASSP.2012.6289079.

[9] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation
of Rare Words with Subword Units. 2016. arXiv: 1508.07909 [cs.CL].

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/ICASSP.2012.6289079
https://arxiv.org/abs/1508.07909

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

References III

[10] Pengcheng Yin and Graham Neubig. “TRANX: A Transition-based Neural
Abstract Syntax Parser for Semantic Parsing and Code Generation”. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Brussels, Belgium: Association for
Computational Linguistics, Nov. 2018, pp. 7–12. doi: 10.18653/v1/D18-2002.
url: https://www.aclweb.org/anthology/D18-2002.

[11] Tianyi Zhang et al. BERTScore: Evaluating Text Generation with BERT. 2020.
arXiv: 1904.09675 [cs.CL].

[12] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning”. In:
CoRR abs/1709.00103 (2017).

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

https://doi.org/10.18653/v1/D18-2002
https://www.aclweb.org/anthology/D18-2002
https://arxiv.org/abs/1904.09675

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Thank you for listening!

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Appendix

Seq2Seq

Model hyperparameters Values
The input dimension of the model, INPUT DIM len(nl src.vocab)

The output dimension of the model, OUTPUT DIM len(code target.vocab)
The encoder embedding dimension, ENC EMB DIM 256
The decoder embedding dimension, DEC EMB DIM 256
The encoder hidden layer dimension, ENC HID DIM 512
The decoder hidden layer dimension, DEC HID DIM 512

Table: Seq2Seq model configuration.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Transformer model configuration

Model hyperparameters Values
The dimension of the model, “D MODEL” 256

The number of self-attention heads, “N HEADS” 3
The hidden size of the encoder, and decoder, “HIDDEN SIZE” 512

The maximum length of the input sequence, “MAX LEN” 50

Table: Transformer model configuration.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Se2Seq-RoBERTa model configuration

Model hyperparameters Values
”encoder max length” 512
”decoder max length” 256
”is encoder decoder” True

”length penalty” 2.0
”max length” 64
”model type” ”encoder-decoder”

”no repeat ngram size” 3
”num beams” 4

”tie encoder decoder” True
”vocab size” 50265

”attention probs dropout prob” 0.1
”hidden act” ”gelu”

”hidden dropout prob” 0.1
”hidden size” 768

”layer norm eps” 1e-05
”max position embeddings” 514

”min length” 0
”model type” ”roberta”

”num attention heads” 12
”num beam groups” 1
”num hidden layers” 6

”num return sequences” 3
”top k” 50
”top p” 1.0

Table: Seq2Seq-RoBERTa model configuration.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Seq2Seq-BART model configuration

Model hyperparameters Values
”max length” 128
”min length” 12
”do sample” True

”early stopping” True
”length penalty” 1.0
”temperature” 1.0

”no repeat ngram size” 3
”num beams” 4

”encoder no repeat ngram size” 0
”repetition penalty” 1.0

”attention probs dropout prob” 0.1
”bos token id” 0
”pad token id” 1
”eos token id” 2

”use cache” True
”decoder start token id” 2
”output hidden states” False

”diversity penalty” 0.0
”output attentions” False
”num beam groups” 1

”output scores” False
”num return sequences” 3

”top k” 50
”top p” 1.0

Table: Seq2Seq-BART model configuration.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

One cycle training policy

The one cycle policy follows the Cyclical Learning Rate (CLR) to obtain faster training
time with regularization effect but with a slight modification, thus producing very fast
results when training complex models. The original one cycle policy has three steps:

Initially, the learning rate is progressively increased from lrmax/divfactor to lrmax

and at the same time, the momentum is decreased from mommax to mommin.

Then, the learning rate is decreased from lrmax to lrmax/divfactor and at the same
time, the momentum is increased progressively from mommin to mommax .

At last, the learning rate is decreased further from lrmax/divfactor to
lrmax/(divfactor × 100) and the momentum is kept steady at mommax .

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

How TranX works?

Figure: The overview of the workflow of TranX. Figure drawn from [10]

TranX [10] is a neural semantic parser having a transition system, and a neural
encoder-decoder network to compute action probabilities.
The transition system is extendable to new programming languages (PL) while
the neural network is PL agnostic, i.e., independent of the specific PL.
The transition system of TranX maps the given input NL utterance x into an
AST z using a series of three tree-construction actions.
TranX utilizes ASTs as the intermediate meaning representations (MRs) to
extract over the domain-specific structure of MRs.
The parsing process involves the conversion of the intermediate generated AST z
into a domain-specific meaning representation y .
TranX also uses a probabilistic neural network model p(z | x) to score each
hypothesis AST and to reflect the topology of ASTs.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Evaluation Metrics: BLEU

BLEU (bilingual evaluation understudy) [6] measures the translation closeness by
counting matches of n-grams in candidate and reference translation.
BLEU metric does not take into account the intelligibility or grammatical
correctness of a translated text.
The BLEU is defined by

BP =

{
1 if c > r

exp(1− r
c

) if c ≤ r
(3)

BLEU = BP · exp(
N∑

n=1

1

N
log pn) (4)

pn =

∑
c ε {candidates}

∑
n−gram ε c countclip(n − gram)∑

c′ ε {candidates}
∑

n−gram ε c′ count(n − gram′)
(5)

where pn measures the modified n-gram precision between a document with
candidate translations and a set of human authored reference documents, and the
brevity penalty (BP) down-scales the score for outputs shorter than the reference.
Candidates are the set of sentences to be evaluated. count(n− gram′) counts the
number of times the n-gram appears in the candidate sentence, and
countclip(n − gram) is the same albeit clipped such that it does not exceed the
number of times it appears in one of the reference sentences (which may be zero).

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Corpus-BLEU

It calculates a single corpus-level BLEU score (aka. system-level BLEU) for all the
hypotheses and their respective references.

The original BLEU metric [6] accounts for the micro-average precision (i.e.,
summing the numerators and denominators for each hypothesis-reference(s) pairs
before the division).

Sentence-BLEU

It computes the BLEU metric on a single sentence pair. It calculates the
averaging of the macro-average precision.

However, the meaning of the sentence-level BLEU is more or less a special case of
the corpus-level BLEU, and it can easily get zero value without smoothing
function.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Rouge Scores

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric [4] measures
the n-gram overlap between generated translation and its reference translation. It
is a widely used evaluation metric for summarization.

As the ROUGE score only measures token hard-match, in some cases, the
ROUGE score penalizes two sentences that convey the same semantic
information, but this metric highly rewards sentences with completely different
semantics yet in similar surface forms.

ROUGE-N: measures unigram, bigram, trigram, and higher-order n-gram overlap.

ROUGE-L: measures the longest matching sequence of words using Longest
Common Subsequence (LCS) algorithm.

The advantage of LCS is that it reflects the sentence-level word order as it does
not require consecutive matches but in-sequence matches. Since it automatically
considers the longest in-sequence common n-grams, there is no need for
predefined n-gram length.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Tokenization Models: Byte Pair Encoding

In subword tokenization algorithms, rare words are decomposed into meaningful
subwords instead of frequently used words split into subwords.

Byte pair encoding (BPE) for word segmentation [9], the algorithm relies on a
pre-tokenizer that splits the training data into words.

The algorithm then creates a set of unique words and their frequency of
occurrence in the training data after the pre-tokenization step.

Then, a base vocabulary is created which consists of all symbols that occur in the
set of unique words and the tokenizer learns the merge rules to form a new
symbol from given pair of symbols in the base vocabulary.

The tokenizer gets trained until the vocabulary size reaches the defined vocabulary
size which is a hyperparameter assigned for the training of the tokenizer.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

WordPiece

WordPiece is a subword tokenization algorithm introduced in [8]. This algorithm
is quite similar to BPE. WordPiece tokenizer is used in BERT, DistilBERT
architectures.

This algorithm first includes all the characters present in the training data in its
vocabulary then learns the given number of merge rules progressively.

WordPiece picks up the symbols which maximize the likelihood of the training
data if those symbols are added to the vocabulary, whereas BPE picks up the
most frequent symbol pairs.

The training of WordPiece tokenizer aims to find the symbol pairs that maximize
the likelihood of the training data and for which the probability of the merged
pairs divided by the probabilities of its first symbol, followed by its second symbol
is the highest among all symbol pairs.

E.g., symbol pairs such as “a”, followed by “b” will be merged if the probability
of “ab” divided by “a” and “b” is the highest among all the symbol pairs..

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Unigram

Unigram [2] is not based on merge rules such as BPE, or WordPiece. This means
that the algorithm has several ways of tokenizing new text after training.

At first, Unigram initializes its base vocabulary to a large number of symbols with
pre-tokenized words and the most common substrings then it progressively trims
down each symbol to reduce the size of the vocabulary but keeping the base
characters so that any word can be tokenized.

Given the unigram language model and the vocabulary, the Unigram algorithm
computes the log-likelihood loss over the training data at each training step.

Then, for each symbol in the vocabulary, the algorithm computes the increase in
the training loss if the selected symbol is removed from the vocabulary.

The algorithm removes p percent (p usually being 10% or 20%) of symbols for
which the increase in the training loss is the lowest. This process is repeated
unless the vocabulary has reached the desired size.

Assuming that the training data consists of the words x1, . . . , xN and that the set
of all possible tokenizations for a word xi is defined as S(xi), then the overall loss

is defined as −
N∑
i=1

log
∑

xεS(xi)
p(x).

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Byte-level BPE

GPT-2 [7] uses bytes as a base vocabulary instead of including all possible
Unicode base characters.

This forces the base vocabulary to be of size 256 while ensuring that every base
character is included in the vocabulary.

GPT2’s tokenizer does not need the < unk > token to tokenize every text.

The vocabulary size of the GPT-2 is 50,257, which corresponds to the 256 bytes
base tokens, a special end-of-text token. The tokenizer learns the symbols with
50,000 merges.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

RoBERTa Tokenizer

HuggingFace’s “RoBERTaTokenizerFast” is implemented from the GPT-2
tokenizer, using byte-level Byte-Pair-Encoding.

The tokenizer is trained to treat spaces like parts of the tokens (a bit like
SentencePiece) so that a word will be encoded differently independent of the
position of the word, i.e., whether the word is at the beginning of the sentence
(without space) or not.

BART Tokenizer The HuggingFace BART tokenizer uses byte-level
Byte-Pair-Encoding. It is identical to the “RobertaTokenizerFast” tokenizer as
discussed before.

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Self Attention calculation:

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Multi-headed attention:

Multi-headed attention

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Multi-headed attention calculation:

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

Intro Problem Definition Aims Challenges Background System Design Results & Discussion Conclusion References Appendix

Multi-head attention in one snapshot

Interdisciplinary Center for Scientific Computing, Heidelberg University, SAP Berlin mitodru.niyogi@stud.uni-heidelberg.de

Neural Code Synthesis and Completion

	Introduction
	Problem Definition
	Aims
	Challenges
	Background
	System Design
	Results & Discussion
	Conclusion
	References
	Appendix

