Faithful to the Original: Fact Aware Neural Abstractive Summarization

- Ziqiang Cao, Furu Wei, Wenjie Li, Sujian Li

Mitodru Niyogi

Faculty of Mathematics and Computer Science, Heidelberg University, and SAP SE

January 22, 2020

Background

- Introduction
- 2 Background
- Fact Aware Summ. Framework
- Experiments
- Results and Analysis
- 6 Conclusion
- Reference

Background

Introduction

Unlike extractive summarization, abstractive summarization has to

- fuse different parts of the source text, which inclines to create fake facts.
- Author's preliminary study reveals nearly 30% of the abstract summaries outputs from a state-of-the-art (Nallapati et al.) neural summarization system generate fake facts

Source	the repatriation of at least #,### bosnian
	moslems was postponed friday after the unher
	pulled out of the first joint scheme to return
	refugees to their homes in northwest bosnia.
Target	repatriation of bosnian moslems postponed
s2s	bosnian moslems postponed after unher
	pulled out of bosnia

Figure: An example of fake summaries generated by the state-of-the-art s2s model ◆□▶ ◆御▶ ◆臣▶ ◆臣▶ □ めぬ@

How to handle this problem?

- To achieve this goal, the first step is to extract the facts from the source sentence
- encode existing facts into the summarization system to avoid fake generation
- Use of Open Information Tool (Angeli, Premkumar, and Manning 2015) to encode facts
- OpenIE refers to the extraction of entity relations from the open-domain text
- In OpenIE, a fact is typically interpreted as a relation triple consisting of (subject; predicate; object)
- However, the relation triples are not always extractable, e.g., from the imperative sentences

Sentence	I saw a cat sitting on the desk
	(I; saw; cat)
Triples	(I; saw; cat sitting)
	(I; saw; cat sitting on desk)

Figure: Examples of OpenIE triples in different granularities

Importance of Fact Description:

- words in fact descriptions are 40% more likely to be used in the summary than the words in the original sentence
- It indicates that fact descriptions truly condense the meaning of sentences to a large extent

Source:	Sentence	Fact
AvgLen	31.4	18.2
Count	1	2.7
Copy%	0.12	0.17

Figure: Comparisons between source sentences and relations

Results and Analysis

Introduction

Author's key contributions:

- leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text
- proposal of dual-attention sequence-to-sequence framework to force the summary generation conditioned on both the source text and the extracted fact descriptions
- Experiments on the Gigaword benchmark dataset demonstrate that the model can greatly reduce fake summaries by 80%.

Background

- For example, given the source sentence in the above example, the popular OpenIE tool generates two relation triples including (repatriation; was postponed; friday) and (unher; pulled out of; first joint scheme)
- fact description representation: triplet(subject + predicate + object)
- Problems with OpenIE:
 - OpenIE may extract multiple triples to reflect an identical fact in different granularities
 - This can yield redundant triplets variants for one relation and increases the computation cost of the model
- Authors' proposal:
 - remove a relation triple if all its words are covered by another one to balance redundancy and fact completeness
 - use of dependency parser to supplment the absence of fact descriptions triplets with apprpriate tuples

Dependency Parser:

- A dependency parser converts a sentence into the labeled (governor; dependent) tuples.
- extract the predicate-related tuples according to the labels: nsubj (nominal subject), nsubjpass(passive nominal subject), csubj (clausal subject), csubjpass (clausal passive subject) and dobj(direct obejct)
- reserve the important modifiers including the adjectival (amod), numeric (nummod) and noun compound (compound) for more complete fact descriptions
- merge the tuples containing the same words, and order words based on the original sentence to form the fact descriptions
- It is found out that on average one key source word is missing in the fact descriptions

- **nsubj**: A nominal subject is a noun phrase which is the syntactic subject of a clause
- nsubipass: A passive nominal subject is a noun phrase which is the syntactic subject of a passive clause
- **dobj**: The direct object of a VP is the noun phrase which is the (accusative) object of the verb
- csub: A clausal subject is a clausal syntactic subject of a clause, i.e., the subject is itself a clause
- csubjpass: A clausal passive subject is a clausal syntactic subject of a passive clause

Example	Relation	
"Clinton defeated Dole"	nsubj(defeated, Clinton)	
'Dole was defeated by Clinton"	nsubjpass(defeated, Dole)	
"She gave me a raise"	dobj(gave, raise)	
"What she said makes sense"	csubj(makes, said)	
"That she lied was suspected by everyone"	csubjpass(suspected, lied)	

0000

Reference

Background

0000

Figure: A dependency tree example. Two fact descriptions being extracted: taiwan share prices opened lower tuesday ||| dealers said

- Based on the dependency parser, predicate-related tuples: (prices; opened) (opened; tuesday) (dealers; said) were filtered and the modify-head tuples: (taiwan; price) (share; price) (lower; tuesday)
- These tuples are then merged to form two fact descriptions: taiwan share prices opened lower tuesday ||| dealers said

11/30

Fact Aware Neural Summarization Model Framework

Figure: Modelframework

- model consists of three modules: two encoders and a dual-attention decoder equipped with a context selection gate network.
- The sentence encoder reads the input words $x = (x_1, ..., x_n)$ and converts into hidden states representation $(h_1^x, ..., h_n^x)$
- the relation encoder converts the fact descriptions $r = (r_1, \dots, r_k)$ into hidden states $(h_1^r, ..., h_k^r)$

- model computes the sentence and relation context vectors (c_t^x and c_t^r) at each decoding time step t following the attention mechanism
- context vectors are merged using the gate network
- The decoder produces summaries $y = (y_1, y_i)$ word-by-word conditioned on the tailored context vector which embeds the semantics of both source sentence and fact descriptions

Encoders

Introduction

- ullet input: source sentence x and the fact descriptions r
- For each sequence, the BiGRU encoder is used to construct its semantic representation
- The GRU at the time step i is defined as follows:

$$h_i = GRU(x_i, h_{i-1}) \tag{1}$$

- the composite hidden state represntation of a word: $h_i = [h_i^{\rightarrow}; h_i^{\leftarrow}]$
- \bullet For the relation sequence r, introduce boundary indicators γ to separate their hidden states
- \bullet γ is defined as follows:

$$\gamma_i = \begin{cases} 0, & r_i \text{ is "}|||"\\ 1, & \text{otherwise} \end{cases}$$
 (2)

ullet γ is used to reset the GRU state in Eq. 1:

$$h_i' = \gamma_i h_i \tag{3}$$

Mitodru Nivogi Faculty of Mathematics and Computer Science, Heidelberg University, and SAP SE

Dual-Attention Decoder

- decoder: GRU with attentions (Bahdanau et.)
- At each decoding time step t, new hidden state s_t :

$$s_t = GRU(y_{t-1}, c_{t-1}, s_{t-1})$$
 (4)

• the context representation of the sentence at time step t:

$$e_{t,i}^{x} = MLP(s_t, h_i^{x}) \tag{5}$$

$$\alpha_{t,i}^{\mathsf{x}} = \frac{\exp(e_{t,i}^{\mathsf{x}})}{\sum_{i} \exp(e_{t,j}^{\mathsf{x}})} \tag{6}$$

$$c_t^{\mathsf{X}} = \sum_i \alpha_{t,i}^{\mathsf{X}} h_i^{\mathsf{X}} \tag{7}$$

• "FTSum_c": concatenates two context vectors:

$$c_t = [c_t^x; c_t^r] \tag{8}$$

"FTSum_σ": used MLP to build a gate network

$$g_t = MLP(c_t^x, c_t^r) \tag{9}$$

- Experiments show that FTSum_g significantly outperforms FTSum_c
- **prediction:** softmax layer over previous word y_{t-1} , context vector c_t and current decoder state s_t

$$o_t = W_w[y_{t-1}] + W_c c_t + W_s s_t (11)$$

$$p(y_t \mid y_{< t}) = softmax(W_o o_t)$$
 (12)

Learning:

Goal: is to maximize the estimated probability of the actual summary

$$J(\theta) = -\frac{1}{|D|} \sum_{(x,r,y) \in D} \log(p(y \mid x,r))$$
 (13)

Dataset

Introduction

Dataset	Train	Dev.	Test
Count	3.8M	189k	1951
AvgSourceLen	31.4	31.7	29.7
AvgTargetLen	8.3	8.3	8.8

Figure: Data statistics for the English Gigaword. Avg- SourceLen is the average input sentence length and AvgTar- getLen is the average headline length.

- Experiments conducted on the Annotated English Gigaword corpus, as with (Rush, Chopra, and Weston 2015b)
- This parallel corpus is produced by pairing the first sentence in the news article and its headline as the summary with heuristic rules.

Evaluation metrics:

Background

Rouge 1

Introduction

- Rouge 2
- ROUGE-L
- Manual inspection whether the generated summaries accord with the facts in the original sentences into three categories: FAITHFUL, FAKE and UNCLEAR

Training:

- Glove embeddings of 200 dimensional size
- All GRU hidden state dimension fixed to 400
- Dropout probability of 0.5
- beam search of size 6 was used to generate the summary, and the maximal length of a summary is 20 words

Results and Analysis

•0000000

Background

Introduction

ABS:(Rush, Chopra, and Weston 2015a) used an attentive CNN encoder and NNLM decoder to summarize the sentence

- ABS+: (Chopra et al. 2015) fine tuned ABS model to balnce abstractive and extractive tendency
- RAS-Elman: (Chopra et al. 2016) convolutional attention-based encoder and an RNN de coder.
- Feats2s: (Nallapati et al. 2016) full s2s RNN model with added POS tag and NER, to enhance the encoder representation
- Luong-NMT: (Luong et al. 2015) Two-layer LSTMs MNT model with 500 hidden units in each layer
- att-s2s: standard attentional s2s with dl4mt model (conditioned GRU with attention)

Imformativeness Evaluation

Background

Model	Perplexity
ABS^{\dagger}	27.1
RAS-Elman [†]	18.9
s2s-att	24.5
$FTSum_c$	20.1
$FTSum_g$	16.4

Figure: Final perplexity on the development set

Takeaways:

- Proposed model achieves the lowest perplexity compared against the state-of-the-art systems
- FTSum_g largely outperforms FTSum_c which outlines the importance of context selection
- fact descriptions have significant contribute to the increase of ROUGE scores

Model	RG-1	RG-2	RG-L
ABS^{\dagger}	29.55*	11.32*	26.42*
$ABS+^{\dagger}$	29.78*	11.89*	26.97*
Feats2s [†]	32.67*	15.59*	30.64*
RAS-Elman [†]	33.78*	15.97*	31.15*
Luong-NMT [†]	33.10*	14.45*	30.71*
s2s+att	34.23*	15.52*	31.57*
FTSum _c	35.73*	16.02*	34.13
$FTSum_g$	37.27	17.65	34.24

Figure: ROUGE F1 performance. "*" indicates statistical significance of the corresponding model with respect to the baseline model on the 95% confidence interval in the official ROUGE script. RG refers to ROUGE for short.

 Despite ABS+ and Feats2s have utilized a series of hand-crafted features, the proposed model surpasses Feats2s by 13% and ABS+ by 56% on ROUGE-2

Faithful evaluation:

Background

Introduction

Model	Category	Count
	FAITHFUL	68
att-s2s	FAKE	27
	UNCLEAR	5
	FAITHFUL	87
$FTSum_q$	FAKE	6
	UNCLEAR	7

Figure: Faithfulness performance on the test set.

- randomly select 100 sentences from the test set. Then, classify the generated summaries as FAITHFUL, FAKE or UNCLEAR
- Around 30% s2s-att outputs gives disinformation
- Proposed model only reports to 6% fake

Faithful to the Original: Fact Aware Neural Abstractive Summarization

- ullet 90% of summaries generated by propsoed model is faithful
- It is observed that s2s-att tends to copy the words closer to the predicate and regard them as its subject and object

Background

Figure: Examples of defective outputs. Bold font to indicate the problematic parts

- Example 1: att-s2s treats "bosnian moslems" as the subject of "postponed" and "bosnia" as the object of "pulled out of"
- Example 2: att-s2s mismatches the object while the proposed model fails to produce a complete sentence due to absence of high-quality fact descriptions (main clause is hard to summarize)
- Example 3: inability of the model to utilize multiple long fact descriptions for generation. Model utilizes one fact instead of 2 long fact descriptions
- As a result, despite the high faithfulness, the informativeness is somewhat damaged

Results and Analysis

00000000

Gate Analysis: What does the gate network (Eq. 9) actually learns?

Figure: Gates change during training

- gate values apparently reflect the relative reliability of sentence and fact descriptions
- At the beginning, the average gate value exceeds 0.5, which means the generation is biased to the source sentence

Introduction

Background

Background

- As training proceeds, drop in gate value results that the fact descriptions are more reliable
- the average gate value is gradually stabilized to 0.415
- the ratio of sentence and relation gate values i.e., (1 0.415)/0.415 \approx 1.41, is extremely close to the ratio of copying proportions i.e., $0.17/0.12 \approx 1.42$
- It seems that the model predicts the copy proportion and normalizes it as the gate value

Conclusion

- investigates the faithfulness problem in abstractive summarization
- popular OpenIE and dependency parse tools were used to extract fact descriptions in the source sentence
- introduces the dual-attention s2s framework to force the generation conditioned on both source sentence and the fact descriptions
- fact descriptions indeed increases ROUGE scores
- Experiments on the Gigaword benchmark demonstrate that the proposed model greatly reduce fake summaries by 80%.

Pros:

Introduction

- significance tests were performed on results
- first to test the authenticity of the generated abstract summaries
- strong baselines
- massive gain to reduce the fake summaries

Cons:

- Failure of the study as to how the model fails to utilize multiple fact descriptions to improve informativeness
- The author should have explained more about the concept of dependency parser and relation terms in general
- unavailability of code
- didn't present as how the loss converges during the training
- They didn't try out with other LSTM based encoders

Reference

Background

Introduction

Ziqiang Cao, Furu Wei, Wenjie Li, Sujian Li. Faithful to the Original: Fact Aware Neural Abstractive Summarization. arXiv:1711.04434, 2017

de Marneffe, Marie-Catherine and Manning, Christopher D. 2008. Stanford typed dependencies manual. Technical report, Stanford University.

