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Introduction
Objective:

Develop a deep learning model to discriminate cancer and benign
prostate regions in TeUS data.
Why deep learning?

It automatically learns a high-level latent feature representation from
data without handcrafted features.

Common approaches:
Ultrasound Imaging for tissue characterization, Elastography,
Doppler Imaging, fusion of transrectal ultrasound (TRUS) with
multi-parametric MRI (mp-MRI) have been used for PCa detection.

Modern approaches:
Machine learning framework such as random forests, support vector
machines, Bayesian classifiers, Hidden Markov Models have been
used to extract information from the backscattered ultrasound data
obtained.
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Author’s key contributions:
In this paper, the authors proposed to use deep recurrent neural
networks (RNN) to explicitly model the temporal information in
TeUS.
Authors’s LSTM model achieve the highest accuracy in separating
cancer from benign tissue in the prostate.
The authors reported area under the curve, sensitivity, specificity,
and accuracy of 0.96, 0.76, 0.98, and 0.93 respectively.
How?

Trained LSTM, GRU, vanilla RNN models on TeUS data.
Predict whether the data samples are benign or cancerous.
Hyperparameter optimization using Grid Search.
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Prostate Cancer insights
The American Cancer Society estimates 191,930 new cases to be
diagnosed and 33,330 deaths in 2020 1 in the United States. Early
stage PCa detection followed by treatment results in a five-year
survival rate of above 95% [3].
About 1 man in 9 will be diagnosed with prostate cancer during his
lifetime.
Prostate cancer is the second leading cause of cancer death in
American men, behind only lung cancer.
About 1 man in 41 will die of prostate cancer.

1https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
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Recurrent Neural Network (RNN)
RNNs process sequential data points through a recurrent hidden
state whose activation at each step depends on that of a previous
step. Generally, given sequence data x = (x1, , ..., xT ), an RNN
updates its recurrent hidden state ht by

ht =

{
0, if t = 0
φ(ht−1, xt), otherwise (1)

where xt and ht are input and the recurrent hidden state at time
step t, and φ(.) represents the nonlinear activation function of a
hidden layer, such as a sigmoid or hyperbolic tangent
In vanilla RNN, the update rule of the recurrent hidden state

ht = φ(Wxt + Uht−1), (2)

ht = Φ(Wihxt + Whhht−1 + bh), (3)
where t = 1 to T , Wih denotes the input-hidden weight vector, Whh
represents the weight matrix of the hidden layer, and bh is the
hidden layer bias vector
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Long Short-Term Memory network (LSTM)

Figure: Fig taken from http://web.stanford.edu/class/cs224n/slides/cs224n-
2020-lecture07-fancy-rnn.pdf
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Gated Recurrent Unit (GRU)

Figure: Fig taken from http://web.stanford.edu/class/cs224n/slides/cs224n-
2020-lecture07-fancy-rnn.pdf
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Dataset
TeUS data was acquired from 157 subjects during fusion prostate
biopsy.
In dataset, there are 83 biopsy cancerous cores with GS 3+3 or
higher, 31 cancerous cores with GS ≥ 4+3. The remaining 172
cores are non-cancerous and include benign or fibromuscular tissue.
Training data: consists of 84 cores with the following histopathology
label distribution: benign: 42 cores; 2 cores of GS 3+3; 14 cores of
GS 3+4; 3 cores of GS 4+3; 18 cores of GS 4+4; and, 5 cores of GS
4+5.
Test data: consists of 171 cores, where 130 cores are labeled as
benign, 29 cores with GS ≤ 3+4, and 12 cores with GS ≥ 4+3.
Train-Validation split: 80-20%
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Data Preprocessing and augmentation
For each biopsy target, target region of 2 mm × 10 mm area around
the target location has been considered.
The target region is divided to 80 ROIs of size 0.5 mm × 0.5 mm.
Sliding window of size 0.5 mm × 0.5 mm approach is used for the
data augmentation.
Number of training samples (N = |Dtrain| = 129, 024).

Figure: Preprocessing and ROI selection. Fig taken from [1]
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Proposed Discriminative Method
Let D = (x (i), y (i))

|D|
i=1 represent a collection of all labeled ROIs,

where x (i) is the i th TeUS sequence and y (i) indicates the
corresponding label.
x (i) = (x (i)

1 , , ..., x (i)
T ), is composed of signal-amplitude values x (i)

t for
each time step, t, and is labeled as y i ϵ {0, 1}, where zero and one
indicate benign and cancer outcome,
Training Objective

The model learns a distribution over classes P(y |x1, , ..., xT ) given a
time-series sequence x1, , ..., xT .
The final hidden state generates the posterior probability for the
given sequence:

z(i) = wT
s h + bs ; (4)

ȳ (i) = P(y (i)
j |x) = S(z (i)

j ) =
expz(i)j

expz(0 i) +expz(i)1
, jϵ{0, 1} (5)

where S is the softmax function, which in the binary classification
case is equivalent to the logistic function, and ȳ (i) indicates the
predicted label.
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Optimization Criterion: The optimization criterion is to minimize the
negative log-likelihood of the loss function which is the binary
cross-entropy between y (i) and ȳ (i) over all training samples,

L(ȳ , y) = − 1
N

N∑
i=1

[y (i) log ȳ (i) + (1 − y (i)) log(1 − ȳ (i))], (6)

where N = |Dtrain|
Cancer Classification:

The probability of a given core being cancerous: PC =
∑|C|

i I(ȳ (i)=1)
|C |

Cancerous core, when PC ≥ 0.5.

Figure: Proposed method. Fig taken from [1]
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Hyperparameter Selection
Grid search approach is used to optimize the hyper-parameters. It is
an exhaustive search through a prespecified subset of the
hyperparameter space of the learning algorithm.
Both regularization (L2 regularization) and dropout have been used
to reduce the over-fitting.
Grid search hyperparameters: the number of RNN hidden layers, nhϵ
{1, 2}, batch size, bsϵ {64, 128}, and initial learning rate, lrϵ {0.01
0.0001} with three different optimization algorithms, SGD,
RMSprop and Adam.
All models are trained with the same number of iterations and
training is stopped after 100 epochs.
Monitoring of the validation loss and if no improvement is observed
over 10 epochs, the learning rate is reduced by lrnew = lr × factor ,
where factor = 0.9.
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Model Training and Evaluation
Early stopping if loss does not decrease or increases after 10 epochs.
Sensitivity, specificity, and accuracy in detecting cancerous tissue
samples in the test data, Dtest .
Sensitivity or recall is defined as the percentage of cancerous cores
that are correctly identified, while specificity is the proportion of
non-cancerous cores that are correctly classified.
The overall performance of the models are reported using AUC.
The AUC curve depicts a relative trade-off between sensitivity and
specificity. The maximum value for AUC is 1, where higher values
indicate better classification performance.
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Network Analysis: Ablation study
Examine the LSTM gates to better understand the temporal
information in TeUS.
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Model Selection:
RMSprop substantially outperforms SGD optimization for all of the
RNN cell types.
RMSprop and Adam optimizers have similar performance for GRU
and LSTM cells.
RMSprop leads to a better performance on the dataset.
Optimized models: bs = 128, lr = 0.0001 (vanilla RNN); bs = 64,
lr = 0.0001 (LSTM); bs = 128, lr = 0.01 (GRU).
For all models, dropout rate, i.e, dr = 0.2 and lr eg = 0.0001
generate the lowest loss and the highest accuracy for both training
and validation datasets.
All models converge after 65±7 epochs, and GRU and LSTM cells
outperform vanilla RNN cells in terms of accuracy.
GRU cells has a steeper learning curve and converges faster than the
network with LSTM cells.
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Figure: Comparison between optimizer performance for different RNN cells:
Each curve corresponds to an RNN network structure with two hidden layers,
batch size of 128 with dropout rate of 0.2 and regularization term of 0.0001.
(a) LSTM. (b) GRU. (c) Vanilla RNN. Fig taken from [1]
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Figure: Learning curves of different RNN cells using the optimum
hyper-parameters in our search space. All of the models use the RMSprop
optimizer and converge after 65 ± 7 epochs. (a) LSTM. (b) GRU. (c) Vanilla
RNN. Fig taken from [1]
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Model Performance
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Figure: Cancer likelihood maps overlaid on B-mode ultrasound images, along
the projected needle path in the TeUS data, and centered on the target. Red
indicates predicted labels as cancer, and blue indicates predicted benign
regions. The boundary of the segmented prostate in MRI is overlaid on TRUS
data. The arrow points to the target location. The top row shows the result of
LSTM and the bottom row shows the result of spectral analysis [2] for benign
targets (a), and cancer targets (b) and (c). Fig taken from [1].
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Network Analysis
What contributes the most to distinguish between benign and
cancerous cells?
The difference map between the final activation of the network (ht
at t = 100) for TeUS data from benign and cancerous samples have
been generated and top 20 cells with the highest activation
difference has been chosen.
The most discriminative features for distinguishing cancerous and
benign tissue samples are captured within the first half of TeUS
sequence.
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Effect of input sequence length on performance
The higher the length of input TeUS sequence, the performance of
the models increase.
However, for TeUS sequence length more than 50, the improvement
saturates.

Figure: Sequence length effect.Fig taken from [1]
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Conclusion
The authors achieved an accuracy of 93% by using LSTM based
model for prostrate cancer detection.
Successfully conducted statistical significance t-tests with confidence
level of more than 95% improvement in accuracy over spectral
analysis approach [2] proposed by authors previously .
Hyperparameter tuning was performed in order to tune the model
performance from over-fitting.
Implementation details were shared along with training time.
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Criticism
No plots or evaluation of LSTM gate cells for visualizing the
activations of cells reported.
Standard RNNs networks background could have been skipped and
repetition of statements.
Not so strong baselines.
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Thank you very much for your attention.
Do you have any question?
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