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Impurity-based Feature Importance

Impurity-based Feature Importance

Impurity-based feature importance refers to a method of evaluating
the importance of features in a decision tree or random forest
model based on the decrease in impurity or entropy that each
feature provides when making splits in the tree.
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Impurity-based Feature Importance

Limitations of Impurity-based Feature Importance

This problem stems from two limitations of impurity-based feature
importance:

m Impurity-based importance is biased towards high cardinality
features.

m Impurity-based feature importance can inflate the importance
of numerical features due to allowing for more possible split
points because of continuous values and hence more decrease
in impurity.

m Impurity-based importance is computed on training set
statistics and therefore do not reflect the ability of a feature
to be useful in making predictions that generalize to the test
set (when the model has enough capacity).
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Permutation Importance

Permutation Importance Algorithm

Algorithm 1: Estimating Feature Importance

Input: Model fitted to the training set

Output: Feature importance scores

Estimate baseline performance on an independent dataset;

foreach feature j do

Randomly permute feature column j in the original dataset;
Measure the performance of the model on the permuted
dataset;

Compute the feature importance as the difference between
baseline performance and performance on the permuted
dataset;

end
Repeat the above steps exhaustively or a large number of times;
Compute the feature importance as the average difference;
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Permutation Importance

Permutation Importance Pros and Cons

Model agnostic
Based on metric of choice

Easy to understand

H o+ + +

Feature importance is specific to the particular model and
may vary for another model

+

Unlike impurity-based random forest importance, it does not
suffer from "overfitting” since an independent dataset is used

- Like impurity-based random forest importance, the importance
is undervalued if two features are highly correlated
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SHAP

SHAP:SHapley Additive exPlanations

m SHAP calculates Shapley values, representing each feature's
contribution to the prediction.

m Shapley values quantify how much a feature influences the
prediction by comparing scores with and without the feature.

m Removing features is equivalent to calculating the expectation
value of the prediction across all possible removed feature
values.

m SHAP deconstructs predictions into contributions from each
input variable, providing insights into their individual effects.

m A machine learning model's prediction, f(x), can be
represented as the sum of its computed SHAP values, plus a

fixed base value, such that:
f(x) = base value + )~ SHAP values.
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Pros and Cons of SHAP

Pros:
m Interpretable: Provides clear and intuitive interpretation of
feature contributions.
m Model Agnostic: Can be applied to various machine learning
models.
m Global and Local Interpretability: Offers insights at both
global and local levels.
m Handles Feature Interactions: Detects and quantifies
interactions between features.
Cons:
m Computational Complexity: Can be computationally expensive
for complex models and large datasets.
m High-Dimensional Data: Interpretability challenges with a
large number of features.
m Correlated Features: Influence of correlated features can-affect
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SHAP

SHAP Summary Plot

The summary plot combines feature importance with feature
effects. Interpretation:

Each point represents a Shapley value for a feature and an
instance.

]

The y-axis position corresponds to the feature.

The x-axis position corresponds to the Shapley value.

[~ -}

The color indicates the feature value (from low to high).

Overlapping points are jittered in the y-axis direction. giving a
sense of the distribution of the Shapley values per feature

]

@ Features are ordered by importance.
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SHAP Dependence Plot

A dependence plot is a scatter plot that shows the effect a single
feature has on the predictions made by the model.
Key features of SHAP dependence plots:

m Show interaction effects between features unlike traditional
partial dependence plots which show the average model
output when changing a feature's value.

m Provide insights into the distribution of effects.

m Determine if the effect of a certain value is constant or varies
based on other feature values.
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Interpretation of SHAP dependence plot

m Each dot represents a single prediction (row) from the dataset.

m The x-axis represents the value of the feature (from the X
matrix).

m The y-axis represents the SHAP value for that feature,
indicating how much knowing that feature's value changes the
output of the model for that sample's prediction.

m The color corresponds to a second feature that may have an
interaction effect with the feature being plotted.

m A distinct vertical pattern of coloring indicates an interaction
effect between the two features.
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Model Performance Metrics

Table: Random Forest Regressor Model Performance

Metric Training Validation Test
MSE 0.430 (0.014) 3.072 (0.204) 2.441
R2 0.887 (0.003) 0.190 (0.045) 0.284095

Table: GBR Model Performance

Metric Training Validation Test

MSE  2.112 (0.041) 2.904 (0.149)  2.490
R2 0.444 (0.010) 0.234 (0.022) 0.269748
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Results
Table: Decision Tree Regressor Model Performance
Metric Training Validation Test
MSE 0.000 (0.000) 5.663 (0.406) 4.728
R? 1.000 (0.000) -0.493 (0.098) -0.386619

13/24



Results
0000000000000

PDP Plot of GBR

GBR (Categorical Features)
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Figure: PDP Plot of GBR

‘GBR (Numerical Features)

Partal dependence:

Parta dependence.
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Feature Importance (MDI)

GBR Feature Importances (MDI)
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Permutation Importance of GBR features on Test Set

Permutation Importances (test set)
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SHAP Feature Importance Plot for GBR
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Figure: GBR Feature Importance Plot
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SHAP Summary Plot
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SHAP Summary Plot: Test Set
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SHAP PDP of GBR
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Figure: SHAP PDP (Rankl)
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SHAP PDP of GBR
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Figure: SHAP PDF for Rank 2
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SHAP PDP of GBR
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Figure: SHAP PDP Rank 3
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SHAP PDP of GBR
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Figure: SHAP PDP Rank 4
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SHAP PDP of GBR
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Figure: SHAP PDP Rank 5
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