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About Myself

Born and raised in Calcutta, India.
Bachelor of Technology in Information Technology in Calcutta, India (2017).
Worked at IIT Kanpur, India as Research Engineer from 2017 - 2018.
MSc. in Scientific Computing, Heidelberg University, Germany (December 2021).
Worked at SAP SE in Walldorf/Berlin, Germany as a Developer and Data
Scientist.
Working as Machine Learning Engineer at GFK SE, Nuremberg.
Past affiliations:

2019-2021 2018-2021 Fall 2019 2017-2018 2016-2017
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Research Interests

NLP (text generation, language models, NLU, multilingual, low resource
languages, summarization, information extraction, knowledge graphs)
ML4Code
Information Retrieval (cross-lingual, neural IR, multimodal IR, legalIR)
Deep Learning & AI4SocialGood

ML4Code Objective?
Want to fill the skill gap between industry & market supply by creating AI models
that can mimic as amateur software developer.
Want to create AI model that will generate REST API services and/or
web/mobile applications.

Mitodru Niyogi, M.Sc., B.Tech.
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Cross-lingual IR

Learning Multilingual Embeddings for Cross-Lingual Information Retrieval
in the Presence of Topically Aligned Corpora [Niyogi et al. 2018]

Problem Defintion
Cross-lingual information retrieval is a challenging task in the absence of aligned
parallel corpora.
Most of the previous work on cross-lingual IR [1, 2] require sentence-aligned
parallel data and other language specific resources such as dictionaries.
Vulic et al. [3] removed this extremely constraining requirement and learnt
bilingual word embedding using only document-aligned comparable corpora.

Our Approach
We addressed the general ad-hoc information retrieval task where the query is in
any of the n languages, and retrieval can be from any of the remaining languages
We presented a multi-lingual setup where we build a cross-lingual IR system that
requires no such aligned corpora or language specific resources.
Unlike Vulic et al.[3], we proposed to build a multi-lingual embedding on the same
setup.
No separate building embeddings for collection pairs in a cross-lingual retrieval
paradigm. Instead, this single multi-lingual embedding will leverage automatic
cross-lingual retrieval between any two pairs of languages.

Mitodru Niyogi, M.Sc., B.Tech.
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Cross-lingual IR

Dataset

Figure: Datasets
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Cross-lingual IR

Proposed Method

Figure: Proposed System Architecture

Figure: Multilingual document creation algorithm for one queryMitodru Niyogi, M.Sc., B.Tech.
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Cross-lingual IR

Cross-lingual query generation

Figure: Embedding & Topic modeling based cross-lingual query generation
Mitodru Niyogi, M.Sc., B.Tech.
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Cross-lingual IR

Retrieval Results

Figure: Multilingual document creation algorithm for one query
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Cross-lingual IR

Results

Figure: Target and generated query examples

Figure: Time requirements, averaged over three datasetsMitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP
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NL2Code

Introduction
Can AI write code? YES!

Natural language (NL) to code suggestion systems assist developers in
programming IDEs by translating NL utterances into compilable code snippet.
These systems reduce the need for developers to search online sources or
prevalent documentation for helpful code snippets.

Current Limitations:
The current approaches are unable to extract semantic information from the
coding intents of the developer.
In earlier NL to code systems, researchers focused mainly on the task of semantic
parsing.
These systems made heavy use of hand-crafted rules and could only work on a
limited examples with a restricted NL syntax.
Hence they are in-extensible and expensive for real-world deployment.
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NL2Code

Problem Definition

The problem can be further thought of developing an AI system that
translates NL into code on the go, such as by assisting the developer by
generating source code given NL intent.
The model should understand the context of the intent and the source code of
the program.
Extending its usability for an assistive code completion feature to predict the next
code tokens given the previous tokens.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Goals

Natural language to code translation
Aims to develop a versatile Seq2Seq architecture for both objectives of translating
text to code (NL2Code) and of generating comments, docstring, method
documentation from source code input (Code2NL).
Aims to use various probabilistic subword tokenizers models to incorporate the
contextual embeddings of the input.
Aims at performing an ablation study to gauge the importance of the crucial
components of the developed AI system.
Aims to develop transfer learning and data augmentation techniques to generate
more diverse and accurate source code translations.

Code completion
Aims to develop a novel RoBERTa based neural language model for source code.
Aims at investing the performance of the model for the fill-in-mask task and
compare the predicted masked tokens with the ground truth.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Challenges

Lack of big (NL,code) pair corpora
The absence of a proper large (NL, code) pair annotated dataset limited us in exploring
the full capacity of our proposed developed deep learning model.

GPU memory limitations
Syntax decoding and lack of diverse output

Generative models often suffer from the lack of diverse and repetitive text generation.
Evaluation Metric

Both BLEU and ROUGE metrics neglect the important syntactic and semantic features
of codes.
Perfect accuracy is too strict to consider the different correct outputs with the same
semantic logic.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Background: BERT

Attention-based bidirectional language model.
Single encoder-style transformer block consisting of a multi-headed attention
block followed by a small fully-connected network.

Figure: Overall pre-training and fine-tuning procedures for BERT. Figure taken from [6]

Figure: Encoding representation in BERT. Figure drawn from [6].
Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

RoBERTa

The BERT architecture was modified to develop RoBERTa as follows:
training the BERT model longer over more data, with larger batches
removing the next sentence prediction (NSP) objective from BERT
training on longer sequences with dynamic masking

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

BART: BERT Encoder + GPT decoder + Noisy Transformations

BART is a denoising autoencoder built with a sequence-to-sequence model.
BART has Transformer based bidirectional Encoder and an autoregressive decoder
that is applicable to a very wide range of end tasks.
BART is trained by corrupting documents and then optimizing a reconstruction
loss—the cross-entropy between the decoder’s output and the original document.
In total, BART model has roughly 10% more parameters than BERT.

Figure: A schematic representation of BART. Figure drawn from [12].

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

BART: Pre-training objectives

Pretraining has two stages:
text is corrupted with an arbitrary noising function.
A sequence-to-sequence model is learned to reconstruct the original text.

Figure: Transformations as part of Pre-training objectives for noising the input in BART. Figure
drawn from [12].
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NL2Code

Evaluation Metrics
BLEU

BLEU (bilingual evaluation understudy) [15] measures the translation closeness by
counting matches of n-grams in candidate and reference translation.
BLEU metric does not take into account the intelligibility or grammatical
correctness of a translated text.
The BLEU is defined by

BP =

{
1 if c > r
exp(1− r

c ) if c ≤ r
(1)

BLEU = BP · exp(
N∑

n=1

1

N
log pn) (2)

Sentence-BLEU: computes the BLEU metric on a single sentence pair. It
calculates the averaging of the macro-average precision.

ROUGE
ROUGE-N [13] : measures unigram, bigram, trigram, and higher-order n-gram
overlap.
ROUGE-L: measures the longest matching sequence of words using Longest
Common Subsequence (LCS) algorithm.
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NL2Code

System Design
Dataset

Intent How can I convert a tensor into a numpy array in TensorFlow?
Code print(type(tf.Session().run(tf.constant([1, 2, 3]))))
Rewritten Intent Convert a tensor with list of constants ‘[1, 2, 3]‘ into a numpy array

in tensorflow

Table: CoNaLa Dataset Sample

Dataset Number of samples
Train 1903
Validation 476
Test 500
Mined 100k train set 96179
Mined 100k valid set 10687
Mined 30k train set 31741
Mined 30k valid set 7935

Table: CoNaLa Dataset

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Dataset Statistics

Average length of nl intent 46.53
Max length of nl intent 122.00

Median length of nl intent 45.00
Mode length of nl intent 46.00

Average length of code snippet 39.77
Max length of code snippet 232.00

Median length of code snippet 38.00
Mode length of code snippet 33.00

Table: Length statistics of CoNaLa data attributes..

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Augmented Dataset Creation

To make the training data larger, we used the idea to generate back translation
by reversing the training objective, i.e., Code2NL, generating natural language
intent from the code snippets.
This made us augment both the training and the validation set by 1x , 2x , or even
kx depending on the top-k predictions retrieved from the Code2NL model.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Proposed System Architecture

Figure: Proposed System Architecture.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Experimental Results and Discussion

RQ1. Results & Analysis: How well does the developed architectures perform on
the NL2Code objective in comparison to the state-of-the-art?

Models trained on Dataset/Augmented Datasets Test BLEU
Seq2Seq-BART on 3x size of CoNaLa dataset 25.7710
Seq2Seq-BART on 5x size of CoNaLa dataset 25.1601

Seq2Seq-BART on CoNaLa dataset 24.2990
Fine-tuned Seq2Seq-BART on CoNaLa„ pretrained on mined100k corpus 26.5379

Fine-tuned Seq2Seq-BART on 3x CoNaLa, pretrained on mined100k corpus 27.8235
Fine-tuned Seq2Seq-BART on 5x CoNaLa, pretrained on mined100k corpus 25.3153

Vanilla Seq2Seq on CoNaLa 13.3270
Transformer-CoNaLa code tokenizer on CoNaLa 15.3834

Transformer-BPE on CoNaLa 19.3402
Transformer-Unigram on CoNaLa 20.9678

Transformer-WordPiece on CoNaLa 17.3237
Seq2Seq-RoBERTa without pretraining 17.0032

Fine-tuned Seq2Seq-RoBERTa on CoNaLa, pretrained on mined30k corpus 18.8853
TranX on CoNaLa 25.1050

Table: Overall Comparison of all models on Test set.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Qualitative Evaluation

Model
Exact match
(Sentence-BLEU
>0.9)

Mostly Correct
(Sentence-BLEU
>= 0.6
and <= 0.9)

Marginally Correct
(Sentence-BLEU
>=0.4
and <=0.6)

Semantically Equivalent
(Sentence-BLEU
>=0.2
and <=0.4)

Number of
Parsable
Snippets

Fine-tuned Seq2Seq-BART 23 66 101 142 425
Seq2Seq-BART w/o pretraining 16 54 110 141 340
Fine-tuned Seq2Seq-RoBERTa 5 35 89 148 326

Seq2Seq-RoBERTa w/o pretraining 3 16 68 170 277
Transformer-CoNaLa tokenizer 2 22 80 179 138

Vanilla Seq2Seq 1 15 75 191 73
TranX N/A N/A N/A N/A 206

Table: Comparison on classifying the translations into categories.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Generated Translations: Seq2Seq-BART

Figure: Comparison of test predictions: fine-tuned Seq2Seq-BART v/s Seq2Seq-BART.

The fine-tuned model worked well for intents like complicated regex, dictionary,
and Pandas dataframe operations; advanced vector & list slicing operations.
The fine-tuned model could even infer the change in the variable name or the
arguments to a data structure/method expressed in the intent.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Generated Translations: Seq2Seq-RoBERTa

Figure: Comparison of test predictions: fine-tuned Seq2Seq-RoBERTa v/s Seq2Seq-RoBERTa.

The model worked well for list & tuples operations such as finding the length of a
list, converting a list into a tuple, concatenating arrays, sorting lists, clock
operations, and file operations such as read and open.
The non fine-tuned model didn’t work well for complicated regex intents, os
system calls, multiple operations with dictionaries, dataframe operations, etc.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Generated Translations: Transformer and Seq2Seq

Figure: Comparison of test predictions: fine-tuned Seq2Seq v/s Transformer.

The transformer model worked well for the intents related to the os path and
system calls, simple regex calls, dictionary operations such as sorting dictionaries,
removing none values from dictionaries, etc.
The transformer model had failed to infer the variable, parameters, function
names, and types from the NL intent.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

RQ2. What did we find from the ablation studies of Seq2Seq-RoBERTa?
Ablation study: Seq2Seq-RoBERTa on self-attention heads
Attention heads Decoding method Test BLEU Test Rouge1 Precision Test Rouge1 Recall Test Rouge1 F1-score

2

Greedy 12.8621 0.3469 0.3259 0.3139
Beam size = 4 12.8621 0.3469 0.3259 0.3139
Beam size = 7 12.6930 0.3371 0.3221 0.3066
Beam size = 10 12.8602 0.3375 0.3227 0.3072
Beam size = 15 12.7773 0.3380 0.3243 0.3076

4

Greedy 13.2852 0.3357 0.3054 0.2988
Beam size = 4 13.9182 0.3273 0.3144 0.3000
Beam size = 7 14.0908 0.3291 0.3216 0.3050
Beam size = 10 13.9419 0.3279 0.3211 0.3045
Beam size = 15 13.8604 0.3275 0.3202 0.3039

6

Greedy 13.3928 0.3197 0.3110 0.2938
Beam size = 4 13.3928 0.3197 0.3110 0.2938
Beam size = 7 13.3976 0.3085 0.3106 0.2871
Beam size = 10 13.5370 0.3110 0.3128 0.2897
Beam size = 15 13.4991 0.3088 0.3111 0.2878

8

Greedy 13.4887 0.3544 0.3075 0.3109
Beam size = 4 13.6894 0.3366 0.3103 0.3048
Beam size = 7 13.8962 0.3365 0.3125 0.3050
Beam size = 10 13.8202 0.3365 0.3114 0.3050
Beam size = 15 13.8844 0.3364 0.3143 0.3062

12

Greedy 13.3493 0.3474 0.3179 0.3117
Beam size = 4 13.8000 0.3399 0.3261 0.3126
Beam size = 7 13.9197 0.3340 0.3253 0.3095
Beam size = 10 14.0733 0.3337 0.3260 0.3096
Beam size = 15 14.0307 0.3350 0.3265 0.3150

Table: Ablation study on the number of self-attention heads for DistilRoBERTa while keeping
layers fixed at 1. (batch_size=8, 50 epochs)

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



30/81

About Past Work Proposal References Appendix

NL2Code

Ablation study: Depth of Seq2Seq-RoBERTa layers

Number of layers Decoding Method Test BLEU Rouge1 F1 Rouge2 F1 RougeL F1

3
Greedy 14.2945 0.3238 0.1148 0.3106

Beam size= 4 15.1319 0.3258 0.1240 0.3127
Beam size = 10 15.3172 0.3268 0.1250 0.3139
Beam Size = 15 15.2510 0.3254 0.1246 0.3125

5

Greedy 15.2415 0.3506 0.1248 0.3349
Beam size= 4 15.9160 0.3520 0.1267 0.3334
Beam size= 7 15.9965 0.3525 0.1276 0.3340

Beam Size = 10 16.0659 0.3525 0.1256 0.3337
Beam Size = 15 16.0700 0.3508 0.1274 0.3330

Table: Ablation study on the depth of RoBERTa layers in the hybrid Se2Seq while keeping the
attention heads to be 8. (batch_size=8, 50 epochs)
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NL2Code

RQ3. Does the SentencePiece tokenizer improve the performance of the
Transformer model?

Tokenizer BLEU Rouge1 F1 Rouge2 F1 Rouge4 F1 RougeL F1 Token Accuracy
WordPiece 17.3237 0.6786 0.5339 0.2448 0.6786 9.1647
Unigram 20.9678 0.6718 0.5214 0.2376 0.6718 12.5242

BPE 19.3402 0.6937 0.5495 0.2567 0.6937 10.1486
CoNaLa code tokenizer 15.3834 0.5449 0.2628 0.1311 0.5347 14.7041

Table: Test metrics for Transformer using SentencePiece tokenizers.

The transformer-Unigram performed better by 36.30%, the
transformer-WordPiece performed better by 12.6% and the transformer- BPE
performed better by 25.72% over the CoNaLa code tokenizer.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

RQ4. Do data augmentation and pretraining techniques improve the results
of the proposed hybrid Seq2Seq-BART architecture?

Transfer learning is a means of extracting knowledge from a source setting and
applying it to a different target setting.
A pretrained model is a saved network that was previously trained on a large
unannotated dataset, typically on large-scale (NL, code) pairs for our task.
These weights can be reused to fine-tune the pretrained model on the smaller
training annotated dataset.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Yes, they do!

Seq2Seq-BART on Augmented Datasets Test BLEU
Seq2Seq-BART on 3x size of original dataset 25.7710
Seq2Seq-BART on 5x size of original dataset 25.1601

Seq2Seq-BART on CoNaLa dataset 24.2990
Fine-tuned Seq2Seq-BART on CoNaLa, pretrained on mined100k corpus 26.5379

Fine-tuned Seq2Seq-BART on 3x CoNaLa, pretrained on mined100k corpus 27.8235
Fine-tuned Seq2Seq-BART on 5x CoNaLa, pretrained on mined100k corpus 25.3153

TranX on CoNaLa train dataset 25.1050
Seq2Seq-RoBERTa on CoNaLa dataset 17.0032

Fine-tuned Seq2Seq-RoBERTa on CoNaLa, pretrained on mined30k corpus 18.8853

Table: Results of Seq2Seq-BART models on Augmented Datasets.

The fine-tuning of these pretrained hybrid Seq2Seq architectures on the training
set improved the test BLEU score metric by 9.2% over non-pretrained
Seq2Seq-BART architecture and by 11.2% over non-pretrained
Seq2Seq-RoBERTa.
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NL2Code

RQ5. Does the proposed hybrid Seq2Seq-BART architecture work
bidirectionally to reverse the hypothesis?

We reversed the input and the output for the Seq2Seq-BART architecture.
We used the same values for the hyperparameters used for the Nl2Code-BART
model.
We observed that the proposed architecture worked quite well for the reversed
hypothesis.

BLEU Rouge1 F1 Rouge2 F1 RougeL F1
21.80291 0.45516 0.21644 0.407032

Table: Test metrics for the Code2NL.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

RQ6. How well does the code completion task work with the use of neural
language model?

A code completion system suggests pieces of code by understanding the context of the
incomplete code snippet written by the developer.
Approach:

We derived a contextual embedding and language modeling of source code by
training a RoBERTa model on Algorithms’ Python code repositories.
We used the subword tokenizer, ByteLevel BPE, to model the source code then
trained the RoBERTa tokenizer for source code.
We finally performed the fill-in mask token task to judge the performance of the
model.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Fill Mask task Prediction/Output Score
”<mask>os” ‘import os’ 0.9979

if (x is not None) <mask>( x > 1)

’if (x is not None) and (x>1) 0.6732
’if (x is not None) / (x>1) 0.0770
’if (x is not None) | (x>1) 0.0769
if (x is not None) or (x>1) 0.0291

if self.graph[u].count([w, v]) <mask>0:
if self.graph[u].count([w, v]) == 0: 0.5888
’if self.graph[u].count([w, v])!= 0:’ 0.3329
if self.graph[u].count([w, v]) >0: 0.0360

sum = a <mask>b

sum = a * b 0.7289
sum = a + b 0.1288
’sum = a - b 0.0186
sum = a // b’ 0.0118

mdist = [<mask>for i in range(V)]

mdist = [0 for i in range(V)] 0.7845
mdist = [i for i in range(V)] 0.0978

mdist = [True for i in range(V)] 0.0320
mdist = [False for i in range(V)] 0.0235
mdist = [1 for i in range(V)] 0.0088

Table: Fill-mask task for code completion.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Conclusion

Parsable Python source code snippets can be directly generated from NL intent
using deep learning architectures, without necessarily using heavily feature
engineered semantic parsers.
The proposed Seq2Seq-BART architecture has exceeded the performance the
state-of-the-art neural semantic parser, TranX on BLEU-4 metric score by 10.82%
for NL2Code on CoNaLa dataset.
The code generation of the proposed algorithm can be improved by using the
pretraining approach and the data augmentation techniques.
The output from the Transformer architecture can be improved for the Nl2Code
task by using subword tokenizers (BPE).
RoBERTa based language model for Python source code has been highly effective
for code completion task.

Mitodru Niyogi, M.Sc., B.Tech.
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NL2Code

Future Work

Explore our novel hybrid Seq2Seq architecture on more datasets such as Django
[14], WikiSQL [27] to see how well the proposed architecture generalizes to other
programming languages and language-specific domains.
Incorporate Abstract Syntax Trees (ASTs) into our proposed architecture and
devise strategies for more conditioned text generation.
Evaluate the model using BERTSCORE [26] as an evaluation metric for the
translated code snippets.
Allow the proposed system to explore multi-line contextual awareness by creating
a dataset of (NL, method definition) to train our proposed architecture to
generate multi-line source code snippets as generating an entire function.

Mitodru Niyogi, M.Sc., B.Tech.
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Fact checking for low-resource languages with code switching capabilities

Code Switched Fake News English Interpretation
WHO ne Bharat ko Karuna free declare Kar Diya hai.

Humare PM narinder Modi is being awarded best PM award by UNESCO.
WHO Bharot keh Korona free boleche. koreche

ভারতেক করােনা মু◌ ঘােষণ koreche

WHO has declared India as Corona free.
Our Prime minister Narindra Modi is being
awarded best PM award by UNESCO..
িব◌ সা◌◌◌ সং◌া ভারতেক করােনা মু◌ ঘােষণা কেরেছ।

Nahi bole toh bhi kam se kam 250-300 nuske bata chuke hai yeh log Corona khatam
karne ke liye. Aur WHO ainwayi keh raha hai ke Corona ke liye vaccine nahi bani abtak

These people have suggested atleast 250-300 prescriptions to cure CORONA.
And WHO, without any reason, is saying we have no vaccine for CORONA

WHO boleche jeh Bharat naki Corona free. Amader PM Modi keh UNESCO shrestho PM award diyeche.

Why?
In the non-homogeneous world, multilingual society necessitates the development
of multilingual fact-checking systems where fake news spread in multilingual
languages over social media and messaging platforms and often claims get
unverified and led to irreparable consequences in the society.
Although false information transcends geographical and linguistic boundaries, the
majority of research in the area has been on English.
Besides the spread of misinformation in low-resource languages in the developing
world, one of the other way of spreading misinformation is the code switching
phenomenon in the social media and popular messaging platforms.
This requires to develop fact-checking methods for multilingual languages which
considers code switching representation of claims.

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



40/81

About Past Work Proposal References Appendix

Fact checking for low-resource languages with code switching capabilities

RQ1: How to develop multilingual fact-checking systems?

Background
Very few works have been done so far on multilingual fact-checking.
[5] Dementieva and Panchenko [2020] used translation system to develop fake
news detection system based on multilingual evidence but we need more relevant
multilingual datasets for testing the performance of multilingual models.
A multilingual fact-checking dataset for 25 languages was introduced by [8] Gupta
and Srikumar [2021],

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



41/81

About Past Work Proposal References Appendix

Fact checking for low-resource languages with code switching capabilities

Approach

Initially, I plan to research about the state-of-the-art fact-checking systems and
report their performance on multilingual datasets.
Thereafter, I plan to develop fact-checking system that will not only incorporate
cross-lingual transfer capabilities but also handle code switching representation of
misinformation representation.
I plan to use the dataset introduced by Kazemi et al. [2021] for Indian
language(Bengali, Hindi, Malayalam, Tamil) and also the FakeCovid dataset
introduced by Gupta and Srikumar [2021] for the evaluation of newly developed
methods for multilingual fact-checking.
I also plan to create a bigger curated annotated dataset by curating posts from
Facebook and tweets from Twitter which are predominantly popular in India
following the steps of [Kazemi et al., 2021]. This will allow to learn to align and
leverage resources from multilingual datasets for fact-checking.
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Fact checking for low-resource languages with code switching capabilities

RQ2: How to efficiently build language independent models that handles
multi-tasks learning capabilities for low-resource starved Indian & African
languages?

Background
Multilingual models(Devlin et al. [2019], Conneau et al. [2020a], Xue et al.
[2021] [6], [4], [24]) are generally trained on large multilingual datasets with
shared vocabulary.
Pires et al. [2019][16] concluded that zero-shot cross-lingual generalization is
made possible by using a shared vocabulary where they fine-tuned mBERT on
downstream task in the source language and evaluated on the same task in the
target language.
However, K et al. [2019][9] showed that multilinguality can also be achieved in a
joint-training setting without sharing joint vocabulary of two languages.
Conneau et al. [2020b][3] and Artetxe et al. [2020][1] concluded that instead of
multilingual pre-training, shared statistical features of language spaces primarily
allow zero-shot cross-lingual transfer.
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Fact checking for low-resource languages with code switching capabilities

Approach

In my research stay, I would like to explore and apply the technique of
cross-lingual transfer learning from a monolingual model to multilingual as shown
by de Vries and Nissim [2021][22] to Indian languages.
I would also like to explore meta learning (Bengio et al. [1991])[2] to learn
shareable structure across multiple tasks with annotated data and develop
uniform cross-lingual transfer methods for unseen languages.
I would also like to find out to what extent pixel-based representations (Rust et
al. [2022][19]) of language can be leveraged for cross-lingual transfer.

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



44/81

About Past Work Proposal References Appendix

Fact checking for low-resource languages with code switching capabilities

RQ3: How to improve code switching representation for multilingual fact
checking?

Background
In multilingual communities, code-switching is a common phenomenon in which a
person speaks more than one language during a conversation.
Multilingual language models (Devlin et al. [2019][6] and Conneau et al.
[2020a][4]) have achieved SOTA performance in various monolingual and
cross-lingual NLP tasks but limited focused on code-switching.
To represent code-switching text, one can train the language model with the word
embeddings of the primary language (PL) and the embedded language (EL) from
FastText [Grave et al., 2018].
In order to handle noisy and out-of-vocabulary mixed words tokens (PL+EL),
subword-level embeddings from FastText [Grave et al., 2018] and SentencePiece
[Kudo and Richardson, 2018] can be utilized to generate the OOV tokens
representations.
Winata et al. [2021][23] found that pre-trained multilingual models do not always
ensure high-quality representations on code-switching, whereas using
meta-embeddings yields comparable results with a lot less complexity.
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Fact checking for low-resource languages with code switching capabilities

Approach

To the best of my knowledge, there does not exist a single fact-checking
multi-lingual dataset with code-switching representation.
In order to address low resource data pairs, I would like to collect a corpus of
code-switched text claims from social media using a combination of sets of anchor
words that exist in one language and sentence-level language taggers.
During my research stay at TU-Darmstadt, I want to develop language agnostic
representational learning approaches which will improve the generalization of
language models on code-switched data especially for low-resource language pairs.
Explore meta-embeddings (methods to combine multilingual meta-embeddings
such as concat, linear, and self-attention) and hierarchical meta-embeddings
(HME) [Winata et al., 2019b] model for code-switched representational learning
for low-resource fact checking system.
For the task of language modeling, conduct an exhaustive analysis of the
relationship between cognate words and code-switching for Indian languages,
although it might not so benefit as majority of Indian languages don’t share the
same script.
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Pragmatic Program Synthesis

Pragmatic Program Synthesis

Background:
Ambiguity of NL expression and the inability of humans to describe their coding
intentions properly poses challenge for synthesizing program generation from NL
descriptions.
As many different synthesized programs could be generated from the same input
but there are few ways to decide heuristically which one is correct.
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Pragmatic Program Synthesis

Problem Statement

The problem is analogous to speaker-listener communication, where the listener
has to interpret the in- tended meaning of the speaker.
The “Rational Speech Act model” (RSA) [Goodman and Frank, 2016][7] has been
effective to resolve ambiguities in speaker-listener communication by reasoning
about what speaker could have expressed (but chose not to) from listeners’
perspective.
Various models of cooperative communication and recursive reasoning of intents
can be applied for pragmatic program generation.
The program synthesis system would construct the alternate programs while
generatively reasoning about what a human would have said if they intended to
communicate each of those programs for a given (ambiguous) human instruction.
This way, all programs which would have better been described differently can be
discarded.
Pu et al., 2020 [17] applied this pragmatic reasoning approach to program
synthesis from examples.
However, to the best of my knowledge, this approach is still not well developed
for program synthesis and has not yet been applied to language-based program
synthesis
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Pragmatic Program Synthesis

Approach

I would like to consider using an encoder-decoder approach (similar to machine
translation).
These models would then be the basis for the recursive reasoning model.
As for exploring the benefits regarding program comprehension and education, I
can resort to a substantial methodological arsenal, including controlled
experiments, think-aloud studies, eye tracking, and neuro-imaging (EEG, fMRI).
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Pragmatic Program Synthesis
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Thank you for listening!
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Appendix

Seq2Seq

Model hyperparameters Values
The input dimension of the model, INPUT_DIM len(nl_src.vocab)

The output dimension of the model, OUTPUT_DIM len(code_target.vocab)
The encoder embedding dimension, ENC_EMB_DIM 256
The decoder embedding dimension, DEC_EMB_DIM 256
The encoder hidden layer dimension, ENC_HID_DIM 512
The decoder hidden layer dimension, DEC_HID_DIM 512

Table: Seq2Seq model configuration.

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



59/81

About Past Work Proposal References Appendix

Transformer model configuration

Model hyperparameters Values
The dimension of the model, “D_MODEL” 256

The number of self-attention heads, “N_HEADS” 3
The hidden size of the encoder, and decoder, “HIDDEN_SIZE” 512

The maximum length of the input sequence, “MAX_LEN” 50

Table: Transformer model configuration.
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Se2Seq-RoBERTa model configuration
Model hyperparameters Values
”encoder_max_length” 512
”decoder_max_length” 256
”is_encoder_decoder” True

”length_penalty” 2.0
”max_length” 64
”model_type” ”encoder-decoder”

”no_repeat_ngram_size” 3
”num_beams” 4

”tie_encoder_decoder” True
”vocab_size” 50265

”attention_probs_dropout_prob” 0.1
”hidden_act” ”gelu”

”hidden_dropout_prob” 0.1
”hidden_size” 768

”layer_norm_eps” 1e-05
”max_position_embeddings” 514

”min_length” 0
”model_type” ”roberta”

”num_attention_heads” 12
”num_beam_groups” 1
”num_hidden_layers” 6

”num_return_sequences” 3
”top_k” 50
”top_p” 1.0

Table: Seq2Seq-RoBERTa model configuration.
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Seq2Seq-BART model configuration
Model hyperparameters Values

”max_length” 128
”min_length” 12
”do_sample” True

”early_stopping” True
”length_penalty” 1.0
”temperature” 1.0

”no_repeat_ngram_size” 3
”num_beams” 4

”encoder_no_repeat_ngram_size” 0
”repetition_penalty” 1.0

”attention_probs_dropout_prob” 0.1
”bos_token_id” 0
”pad_token_id” 1
”eos_token_id” 2
”use_cache” True

”decoder_start_token_id” 2
”output_hidden_states” False

”diversity_penalty” 0.0
”output_attentions” False
”num_beam_groups” 1

”output_scores” False
”num_return_sequences” 3

”top_k” 50
”top_p” 1.0

Table: Seq2Seq-BART model configuration.
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What did we find from the ablation studies of the developed architectures?

Ablation study of the self-attention heads of Transformer
Attention heads Validation BLEU Test BLEU Validation RougeL F1 Test RougeL F1 Validation token accuracy Test token accuracy

2 20.6100 16.7480 0.5730 0.5497 16.5211 13.5680
4 21.6802 17.3580 0.5871 0.5598 18.4361 14.3770
8 23.5436 17.6857 0.6074 0.5707 17.2164 14.1223
16 22.8340 17.2390 0.5957 0.5594 16.8025 13.4464
32 22.3587 17.7187 0.5977 0.5725 18.3544 15.0941

Table: Ablation study of the self-attention heads of Transformer while keeping the number of layers
fixed at 3.
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Ablation study on the number of layers of Transformer

Number of layers Validation BLEU Test BLEU Validation RougeL F1 Test RougeL F1 Validation token accuracy Test token accuracy
1 18.7609 15.2000 0.5673 0.5400 15.7220 14.3319
2 21.4045 16.1740 0.5779 0.5469 18.0871 15.5930
3 21.9000 16.2420 0.5976 0.5716 20.1941 16.6751
4 21.1420 15.0200 0.5892 0.5539 18.9563 15.5323
5 22.1571 15.0414 0.5899 0.5493 19.7900 16.4548
6 19.1737 16.0100 0.5743 0.5642 15.6427 14.2967

Table: Ablation study on the number of layers of Transformer while keeping the attention heads
fixed at 8.
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Figure: Comparison of test predictions: fine-tuned Seq2Seq-BART v/s Seq2Seq-BART.
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Figure: Comparison of test predictions: fine-tuned Seq2Seq-BART v/s Seq2Seq-BART.
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Advantages of using subword unit LM for code

Firstly, as the model had a smaller vocabulary size due to reduced level of data
sparsity, it might have better performance over the non-subword tokenizers.
Secondly, the model could handle the OoV problem by synthesizing the missing
OoV tokens that were seen in the training data using the smaller subtoken units.
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One cycle training policy

The one cycle policy follows the Cyclical Learning Rate (CLR) to obtain faster training
time with regularization effect but with a slight modification, thus producing very fast
results when training complex models. The original one cycle policy has three steps:

Initially, the learning rate is progressively increased from lrmax/divfactor to lrmax
and at the same time, the momentum is decreased from mommax to mommin.
Then, the learning rate is decreased from lrmax to lrmax/divfactor and at the same
time, the momentum is increased progressively from mommin to mommax .
At last, the learning rate is decreased further from lrmax/divfactor to
lrmax/(divfactor × 100) and the momentum is kept steady at mommax .
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How TranX works?

Figure: The overview of the workflow of TranX. Figure drawn from [25]

TranX [25] is a neural semantic parser having a transition system, and a neural
encoder-decoder network to compute action probabilities.
The transition system is extendable to new programming languages (PL) while
the neural network is PL agnostic, i.e., independent of the specific PL.
The transition system of TranX maps the given input NL utterance x into an AST
z using a series of three tree-construction actions.
TranX utilizes ASTs as the intermediate meaning representations (MRs) to
extract over the domain-specific structure of MRs.
The parsing process involves the conversion of the intermediate generated AST z
into a domain-specific meaning representation y .
TranX also uses a probabilistic neural network model p(z | x) to score each
hypothesis AST and to reflect the topology of ASTs.
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Evaluation Metrics: BLEU

BLEU (bilingual evaluation understudy) [15] measures the translation closeness by
counting matches of n-grams in candidate and reference translation.
BLEU metric does not take into account the intelligibility or grammatical
correctness of a translated text.
The BLEU is defined by

BP =

{
1 if c > r
exp(1− r

c ) if c ≤ r
(3)

BLEU = BP · exp(
N∑

n=1

1

N
log pn) (4)

pn =

∑
c ε {candidates}

∑
n−gram ε c countclip(n − gram)∑

c′ ε {candidates}
∑

n−gram ε c′ count(n − gram′)
(5)

where pn measures the modified n-gram precision between a document with
candidate translations and a set of human authored reference documents, and the
brevity penalty (BP) down-scales the score for outputs shorter than the reference.
Candidates are the set of sentences to be evaluated. count(n − gram′) counts the
number of times the n-gram appears in the candidate sentence, and
countclip(n − gram) is the same albeit clipped such that it does not exceed the
number of times it appears in one of the reference sentences (which may be zero).
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Corpus-BLEU
It calculates a single corpus-level BLEU score (aka. system-level BLEU) for all the
hypotheses and their respective references.
The original BLEU metric [15] accounts for the micro-average precision (i.e.,
summing the numerators and denominators for each hypothesis-reference(s) pairs
before the division).

Sentence-BLEU
It computes the BLEU metric on a single sentence pair. It calculates the
averaging of the macro-average precision.
However, the meaning of the sentence-level BLEU is more or less a special case of
the corpus-level BLEU, and it can easily get zero value without smoothing
function.
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Rouge Scores

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric [13] measures
the n-gram overlap between generated translation and its reference translation. It
is a widely used evaluation metric for summarization.
As the ROUGE score only measures token hard-match, in some cases, the
ROUGE score penalizes two sentences that convey the same semantic
information, but this metric highly rewards sentences with completely different
semantics yet in similar surface forms.
ROUGE-N: measures unigram, bigram, trigram, and higher-order n-gram overlap.
ROUGE-L: measures the longest matching sequence of words using Longest
Common Subsequence (LCS) algorithm.
The advantage of LCS is that it reflects the sentence-level word order as it does
not require consecutive matches but in-sequence matches. Since it automatically
considers the longest in-sequence common n-grams, there is no need for
predefined n-gram length.
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Tokenization Models: Byte Pair Encoding

In subword tokenization algorithms, rare words are decomposed into meaningful
subwords instead of frequently used words split into subwords.

Byte pair encoding (BPE) for word segmentation [21], the algorithm relies on a
pre-tokenizer that splits the training data into words.
The algorithm then creates a set of unique words and their frequency of
occurrence in the training data after the pre-tokenization step.
Then, a base vocabulary is created which consists of all symbols that occur in the
set of unique words and the tokenizer learns the merge rules to form a new
symbol from given pair of symbols in the base vocabulary.
The tokenizer gets trained until the vocabulary size reaches the defined vocabulary
size which is a hyperparameter assigned for the training of the tokenizer.
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WordPiece

WordPiece is a subword tokenization algorithm introduced in [20]. This algorithm
is quite similar to BPE. WordPiece tokenizer is used in BERT, DistilBERT
architectures.
This algorithm first includes all the characters present in the training data in its
vocabulary then learns the given number of merge rules progressively.
WordPiece picks up the symbols which maximize the likelihood of the training
data if those symbols are added to the vocabulary, whereas BPE picks up the
most frequent symbol pairs.
The training of WordPiece tokenizer aims to find the symbol pairs that maximize
the likelihood of the training data and for which the probability of the merged
pairs divided by the probabilities of its first symbol, followed by its second symbol
is the highest among all symbol pairs.
E.g., symbol pairs such as “a”, followed by “b” will be merged if the probability of
“ab” divided by “a” and “b” is the highest among all the symbol pairs..

Mitodru Niyogi, M.Sc., B.Tech.
Research Presentation at UKP



74/81

About Past Work Proposal References Appendix

Unigram

Unigram [11] is not based on merge rules such as BPE, or WordPiece. This
means that the algorithm has several ways of tokenizing new text after training.
At first, Unigram initializes its base vocabulary to a large number of symbols with
pre-tokenized words and the most common substrings then it progressively trims
down each symbol to reduce the size of the vocabulary but keeping the base
characters so that any word can be tokenized.
Given the unigram language model and the vocabulary, the Unigram algorithm
computes the log-likelihood loss over the training data at each training step.
Then, for each symbol in the vocabulary, the algorithm computes the increase in
the training loss if the selected symbol is removed from the vocabulary.
The algorithm removes p percent (p usually being 10% or 20%) of symbols for
which the increase in the training loss is the lowest. This process is repeated
unless the vocabulary has reached the desired size.
Assuming that the training data consists of the words x1, . . . , xN and that the set
of all possible tokenizations for a word xi is defined as S(xi ), then the overall loss

is defined as −
N∑

i=1
log

∑
xεS(xi )

p(x).
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Byte-level BPE

GPT-2 [18] uses bytes as a base vocabulary instead of including all possible
Unicode base characters.
This forces the base vocabulary to be of size 256 while ensuring that every base
character is included in the vocabulary.
GPT2’s tokenizer does not need the < unk > token to tokenize every text.
The vocabulary size of the GPT-2 is 50,257, which corresponds to the 256 bytes
base tokens, a special end-of-text token. The tokenizer learns the symbols with
50,000 merges.
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RoBERTa Tokenizer
HuggingFace’s “RoBERTaTokenizerFast” is implemented from the GPT-2
tokenizer, using byte-level Byte-Pair-Encoding.
The tokenizer is trained to treat spaces like parts of the tokens (a bit like
SentencePiece) so that a word will be encoded differently independent of the
position of the word, i.e., whether the word is at the beginning of the sentence
(without space) or not.

BART Tokenizer The HuggingFace BART tokenizer uses byte-level
Byte-Pair-Encoding. It is identical to the “RobertaTokenizerFast” tokenizer as
discussed before.
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Self Attention calculation:
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Multi-headed attention:

Multi-headed attention
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Multi-headed attention calculation:
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Multi-head attention in one snapshot
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How Transformer uses multi-head attention?

The Transformer uses multi-head attention in three different ways:
In the “encoder-decoder attention” layers, the memory keys and the values come
from the output of the encoder, and the queries come from the previous decoder
layer. This allows every position in the decoder to attend all positions in the input
sequence.
The self-attention layers in the encoder allow each position in the encoder to
attend to all positions in the previous layer of the encoder. In a self-attention
layer, all of the queries, keys, values, come from the output of the previous layer
in the encoder.
Each position in the decoder can attend to all positions in the decoder up to and
including that position via self-attention layers. The leftward information flow in
the decoder is prevented to preserve the auto-regressive property. Therefore, the
authors masked out (setting to −∞) all values in the input of the softmax that
correspond to illegal connections inside of the scaled dot-product attention as
shown in ??.
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